
Tornado Documentation
Release 3.1

Facebook

May 24, 2017

Contents

1 Overview 1
1.1 Request handlers and request arguments . 2
1.2 Overriding RequestHandler methods . 3
1.3 Error Handling . 3
1.4 Redirection . 4
1.5 Templates . 5
1.6 Cookies and secure cookies . 6
1.7 User authentication . 7
1.8 Cross-site request forgery protection . 8
1.9 Static files and aggressive file caching . 9
1.10 Localization . 10
1.11 UI modules . 11
1.12 Non-blocking, asynchronous requests . 13
1.13 Asynchronous HTTP clients . 13
1.14 Third party authentication . 14
1.15 Debug mode and automatic reloading . 14
1.16 Running Tornado in production . 15
1.17 WSGI and Google AppEngine . 16

2 Core web framework 19
2.1 tornado.web — RequestHandler and Application classes 19
2.2 tornado.httpserver — Non-blocking HTTP server . 33
2.3 tornado.template — Flexible output generation . 36
2.4 tornado.escape — Escaping and string manipulation . 39
2.5 tornado.locale — Internationalization support . 41

3 Asynchronous networking 45
3.1 tornado.gen — Simplify asynchronous code . 45
3.2 tornado.ioloop — Main event loop . 48
3.3 tornado.iostream — Convenient wrappers for non-blocking sockets 53
3.4 tornado.httpclient — Asynchronous HTTP client . 56
3.5 tornado.netutil — Miscellaneous network utilities . 60
3.6 tornado.tcpserver — Basic IOStream-based TCP server 62

4 Integration with other services 65
4.1 tornado.auth — Third-party login with OpenID and OAuth . 65
4.2 tornado.platform.caresresolver — Asynchronous DNS Resolver using C-Ares 73

i

4.3 tornado.platform.twisted — Bridges between Twisted and Tornado 74
4.4 tornado.websocket — Bidirectional communication to the browser 75
4.5 tornado.wsgi — Interoperability with other Python frameworks and servers 77

5 Utilities 81
5.1 tornado.autoreload — Automatically detect code changes in development 81
5.2 tornado.concurrent — Work with threads and futures . 82
5.3 tornado.httputil — Manipulate HTTP headers and URLs 83
5.4 tornado.log — Logging support . 85
5.5 tornado.options — Command-line parsing . 85
5.6 tornado.process — Utilities for multiple processes . 88
5.7 tornado.stack_context — Exception handling across asynchronous callbacks 89
5.8 tornado.testing — Unit testing support for asynchronous code 91
5.9 tornado.util — General-purpose utilities . 96

6 Release notes 99
6.1 What’s new in Tornado 3.1 . 99
6.2 What’s new in Tornado 3.0.2 . 103
6.3 What’s new in Tornado 3.0.1 . 104
6.4 What’s new in Tornado 3.0 . 104
6.5 What’s new in Tornado 2.4.1 . 111
6.6 What’s new in Tornado 2.4 . 112
6.7 What’s new in Tornado 2.3 . 113
6.8 What’s new in Tornado 2.2.1 . 115
6.9 What’s new in Tornado 2.2 . 115
6.10 What’s new in Tornado 2.1.1 . 118
6.11 What’s new in Tornado 2.1 . 118
6.12 What’s new in Tornado 2.0 . 121
6.13 What’s new in Tornado 1.2.1 . 122
6.14 What’s new in Tornado 1.2 . 122
6.15 What’s new in Tornado 1.1.1 . 124
6.16 What’s new in Tornado 1.1 . 125
6.17 What’s new in Tornado 1.0.1 . 126
6.18 What’s new in Tornado 1.0 . 126

7 Indices and tables 129

Python Module Index 131

ii

CHAPTER 1

Overview

FriendFeed’s web server is a relatively simple, non-blocking web server written in Python. The FriendFeed application
is written using a web framework that looks a bit like web.py or Google’s webapp, but with additional tools and
optimizations to take advantage of the non-blocking web server and tools.

Tornado is an open source version of this web server and some of the tools we use most often at FriendFeed. The
framework is distinct from most mainstream web server frameworks (and certainly most Python frameworks) because
it is non-blocking and reasonably fast. Because it is non-blocking and uses epoll or kqueue, it can handle thousands
of simultaneous standing connections, which means the framework is ideal for real-time web services. We built the
web server specifically to handle FriendFeed’s real-time features — every active user of FriendFeed maintains an open
connection to the FriendFeed servers. (For more information on scaling servers to support thousands of clients, see
The C10K problem.)

Here is the canonical “Hello, world” example app:

import tornado.ioloop
import tornado.web

class MainHandler(tornado.web.RequestHandler):
def get(self):

self.write("Hello, world")

application = tornado.web.Application([
(r"/", MainHandler),

])

if __name__ == "__main__":
application.listen(8888)
tornado.ioloop.IOLoop.instance().start()

We attempted to clean up the code base to reduce interdependencies between modules, so you should (theoretically)
be able to use any of the modules independently in your project without using the whole package.

1

http://friendfeed.com/
http://webpy.org/
http://code.google.com/appengine/docs/python/tools/webapp/
https://github.com/facebook/tornado
http://www.kernel.org/doc/man-pages/online/pages/man4/epoll.4.html
http://www.kegel.com/c10k.html

Tornado Documentation, Release 3.1

Request handlers and request arguments

A Tornado web application maps URLs or URL patterns to subclasses of tornado.web.RequestHandler.
Those classes define get() or post() methods to handle HTTP GET or POST requests to that URL.

This code maps the root URL / to MainHandler and the URL pattern /story/([0-9]+) to StoryHandler.
Regular expression groups are passed as arguments to the RequestHandler methods:

class MainHandler(tornado.web.RequestHandler):
def get(self):

self.write("You requested the main page")

class StoryHandler(tornado.web.RequestHandler):
def get(self, story_id):

self.write("You requested the story " + story_id)

application = tornado.web.Application([
(r"/", MainHandler),
(r"/story/([0-9]+)", StoryHandler),

])

You can get query string arguments and parse POST bodies with the get_argument() method:

class MyFormHandler(tornado.web.RequestHandler):
def get(self):

self.write('<html><body><form action="/myform" method="post">'
'<input type="text" name="message">'
'<input type="submit" value="Submit">'
'</form></body></html>')

def post(self):
self.set_header("Content-Type", "text/plain")
self.write("You wrote " + self.get_argument("message"))

Uploaded files are available in self.request.files, which maps names (the name of the HTML <input
type="file"> element) to a list of files. Each file is a dictionary of the form {"filename":...,
"content_type":..., "body":...}.

If you want to send an error response to the client, e.g., 403 Unauthorized, you can just raise a tornado.web.
HTTPError exception:

if not self.user_is_logged_in():
raise tornado.web.HTTPError(403)

The request handler can access the object representing the current request with self.request. The
HTTPRequest object includes a number of useful attributes, including:

• arguments - all of the GET and POST arguments

• files - all of the uploaded files (via multipart/form-data POST requests)

• path - the request path (everything before the ?)

• headers - the request headers

See the class definition for tornado.httpserver.HTTPRequest for a complete list of attributes.

2 Chapter 1. Overview

Tornado Documentation, Release 3.1

Overriding RequestHandler methods

In addition to get()/post()/etc, certain other methods in RequestHandler are designed to be overridden by
subclasses when necessary. On every request, the following sequence of calls takes place:

1. A new RequestHandler object is created on each request

2. initialize() is called with keyword arguments from the Application configuration. (the
initialize method is new in Tornado 1.1; in older versions subclasses would override __init__ instead).
initialize should typically just save the arguments passed into member variables; it may not produce any
output or call methods like send_error.

3. prepare() is called. This is most useful in a base class shared by all of your handler subclasses, as prepare
is called no matter which HTTP method is used. prepare may produce output; if it calls finish (or
send_error, etc), processing stops here.

4. One of the HTTP methods is called: get(), post(), put(), etc. If the URL regular expression contains
capturing groups, they are passed as arguments to this method.

5. When the request is finished, on_finish() is called. For synchronous handlers this is immediately after
get() (etc) return; for asynchronous handlers it is after the call to finish().

Here is an example demonstrating the initialize() method:

class ProfileHandler(RequestHandler):
def initialize(self, database):

self.database = database

def get(self, username):
...

app = Application([
(r'/user/(.*)', ProfileHandler, dict(database=database)),
])

Other methods designed for overriding include:

• write_error(self, status_code, exc_info=None, **kwargs) - outputs HTML for use on
error pages.

• get_current_user(self) - see User Authentication below

• get_user_locale(self) - returns locale object to use for the current user

• get_login_url(self) - returns login url to be used by the @authenticated decorator (default is in
Application settings)

• get_template_path(self) - returns location of template files (default is in Application settings)

• set_default_headers(self) - may be used to set additional headers on the response (such as a custom
Server header)

Error Handling

There are three ways to return an error from a RequestHandler:

1. Manually call set_status and output the response body normally.

2. Call send_error. This discards any pending unflushed output and calls write_error to generate an error
page.

1.2. Overriding RequestHandler methods 3

Tornado Documentation, Release 3.1

3. Raise an exception. tornado.web.HTTPError can be used to generate a specified status code; all other
exceptions return a 500 status. The exception handler uses send_error and write_error to generate the
error page.

The default error page includes a stack trace in debug mode and a one-line description of the error (e.g. “500: Internal
Server Error”) otherwise. To produce a custom error page, override RequestHandler.write_error. This
method may produce output normally via methods such as write and render. If the error was caused by an
exception, an exc_info triple will be passed as a keyword argument (note that this exception is not guaranteed to be
the current exception in sys.exc_info, so write_error must use e.g. traceback.format_exception
instead of traceback.format_exc).

In Tornado 2.0 and earlier, custom error pages were implemented by overriding RequestHandler.
get_error_html, which returned the error page as a string instead of calling the normal output methods (and
had slightly different semantics for exceptions). This method is still supported, but it is deprecated and applications
are encouraged to switch to RequestHandler.write_error.

Redirection

There are two main ways you can redirect requests in Tornado: self.redirect and with the
RedirectHandler.

You can use self.redirect within a RequestHandler method (like get) to redirect users elsewhere. There
is also an optional parameter permanent which you can use to indicate that the redirection is considered permanent.

This triggers a 301 Moved Permanently HTTP status, which is useful for e.g. redirecting to a canonical URL
for a page in an SEO-friendly manner.

The default value of permanent is False, which is apt for things like redirecting users on successful POST requests.

self.redirect('/some-canonical-page', permanent=True)

RedirectHandler is available for your use when you initialize Application.

For example, notice how we redirect to a longer download URL on this website:

application = tornado.wsgi.WSGIApplication([
(r"/([a-z]*)", ContentHandler),
(r"/static/tornado-0.2.tar.gz", tornado.web.RedirectHandler,
dict(url="https://github.com/downloads/facebook/tornado/tornado-0.2.tar.gz")),

], **settings)

The default RedirectHandler status code is 301 Moved Permanently, but to use 302 Found instead, set
permanent to False.

application = tornado.wsgi.WSGIApplication([
(r"/foo", tornado.web.RedirectHandler, {"url":"/bar", "permanent":False}),

], **settings)

Note that the default value of permanent is different in self.redirect than in RedirectHandler. This
should make some sense if you consider that self.redirect is used in your methods and is probably invoked by
logic involving environment, authentication, or form submission, but RedirectHandler patterns are going to fire
100% of the time they match the request URL.

4 Chapter 1. Overview

http://python.readthedocs.io/en/latest/library/traceback.html#traceback.format_exception
http://python.readthedocs.io/en/latest/library/traceback.html#traceback.format_exc

Tornado Documentation, Release 3.1

Templates

You can use any template language supported by Python, but Tornado ships with its own templating language that
is a lot faster and more flexible than many of the most popular templating systems out there. See the tornado.
template module documentation for complete documentation.

A Tornado template is just HTML (or any other text-based format) with Python control sequences and expressions
embedded within the markup:

<html>
<head>

<title>{{ title }}</title>
</head>
<body>

{% for item in items %}
{{ escape(item) }}

{% end %}

</body>
</html>

If you saved this template as “template.html” and put it in the same directory as your Python file, you could render
this template with:

class MainHandler(tornado.web.RequestHandler):
def get(self):

items = ["Item 1", "Item 2", "Item 3"]
self.render("template.html", title="My title", items=items)

Tornado templates support control statements and expressions. Control statements are surronded by {% and %}, e.g.,
{% if len(items) > 2 %}. Expressions are surrounded by {{ and }}, e.g., {{ items[0] }}.

Control statements more or less map exactly to Python statements. We support if, for, while, and try, all of
which are terminated with {% end %}. We also support template inheritance using the extends and block
statements, which are described in detail in the documentation for the tornado.template.

Expressions can be any Python expression, including function calls. Template code is executed in a names-
pace that includes the following objects and functions (Note that this list applies to templates rendered using
RequestHandler.render and render_string. If you’re using the template module directly outside of a
RequestHandler many of these entries are not present).

• escape: alias for tornado.escape.xhtml_escape

• xhtml_escape: alias for tornado.escape.xhtml_escape

• url_escape: alias for tornado.escape.url_escape

• json_encode: alias for tornado.escape.json_encode

• squeeze: alias for tornado.escape.squeeze

• linkify: alias for tornado.escape.linkify

• datetime: the Python datetime module

• handler: the current RequestHandler object

• request: alias for handler.request

• current_user: alias for handler.current_user

1.5. Templates 5

Tornado Documentation, Release 3.1

• locale: alias for handler.locale

• _: alias for handler.locale.translate

• static_url: alias for handler.static_url

• xsrf_form_html: alias for handler.xsrf_form_html

• reverse_url: alias for Application.reverse_url

• All entries from the ui_methods and ui_modules Application settings

• Any keyword arguments passed to render or render_string

When you are building a real application, you are going to want to use all of the features of Tornado templates,
especially template inheritance. Read all about those features in the tornado.template section (some features,
including UIModules are implemented in the web module)

Under the hood, Tornado templates are translated directly to Python. The expressions you include in your template are
copied verbatim into a Python function representing your template. We don’t try to prevent anything in the template
language; we created it explicitly to provide the flexibility that other, stricter templating systems prevent. Conse-
quently, if you write random stuff inside of your template expressions, you will get random Python errors when you
execute the template.

All template output is escaped by default, using the tornado.escape.xhtml_escape function. This behavior
can be changed globally by passing autoescape=None to the Application or TemplateLoader construc-
tors, for a template file with the {% autoescape None %} directive, or for a single expression by replacing {{
... }} with {% raw ...%}. Additionally, in each of these places the name of an alternative escaping function
may be used instead of None.

Note that while Tornado’s automatic escaping is helpful in avoiding XSS vulnerabilities, it is not sufficient in all
cases. Expressions that appear in certain locations, such as in Javascript or CSS, may need additional escaping.
Additionally, either care must be taken to always use double quotes and xhtml_escape in HTML attributes that
may contain untrusted content, or a separate escaping function must be used for attributes (see e.g. http://wonko.com/
post/html-escaping)

Cookies and secure cookies

You can set cookies in the user’s browser with the set_cookie method:

class MainHandler(tornado.web.RequestHandler):
def get(self):

if not self.get_cookie("mycookie"):
self.set_cookie("mycookie", "myvalue")
self.write("Your cookie was not set yet!")

else:
self.write("Your cookie was set!")

Cookies are easily forged by malicious clients. If you need to set cookies to, e.g., save the user ID of the currently
logged in user, you need to sign your cookies to prevent forgery. Tornado supports this out of the box with the
set_secure_cookie and get_secure_cookie methods. To use these methods, you need to specify a secret
key named cookie_secret when you create your application. You can pass in application settings as keyword
arguments to your application:

application = tornado.web.Application([
(r"/", MainHandler),

], cookie_secret="__TODO:_GENERATE_YOUR_OWN_RANDOM_VALUE_HERE__")

6 Chapter 1. Overview

http://wonko.com/post/html-escaping
http://wonko.com/post/html-escaping

Tornado Documentation, Release 3.1

Signed cookies contain the encoded value of the cookie in addition to a timestamp and an HMAC signature. If the
cookie is old or if the signature doesn’t match, get_secure_cookie will return None just as if the cookie isn’t
set. The secure version of the example above:

class MainHandler(tornado.web.RequestHandler):
def get(self):

if not self.get_secure_cookie("mycookie"):
self.set_secure_cookie("mycookie", "myvalue")
self.write("Your cookie was not set yet!")

else:
self.write("Your cookie was set!")

User authentication

The currently authenticated user is available in every request handler as self.current_user, and in every tem-
plate as current_user. By default, current_user is None.

To implement user authentication in your application, you need to override the get_current_user() method in
your request handlers to determine the current user based on, e.g., the value of a cookie. Here is an example that lets
users log into the application simply by specifying a nickname, which is then saved in a cookie:

class BaseHandler(tornado.web.RequestHandler):
def get_current_user(self):

return self.get_secure_cookie("user")

class MainHandler(BaseHandler):
def get(self):

if not self.current_user:
self.redirect("/login")
return

name = tornado.escape.xhtml_escape(self.current_user)
self.write("Hello, " + name)

class LoginHandler(BaseHandler):
def get(self):

self.write('<html><body><form action="/login" method="post">'
'Name: <input type="text" name="name">'
'<input type="submit" value="Sign in">'
'</form></body></html>')

def post(self):
self.set_secure_cookie("user", self.get_argument("name"))
self.redirect("/")

application = tornado.web.Application([
(r"/", MainHandler),
(r"/login", LoginHandler),

], cookie_secret="__TODO:_GENERATE_YOUR_OWN_RANDOM_VALUE_HERE__")

You can require that the user be logged in using the Python decorator tornado.web.authenticated. If a
request goes to a method with this decorator, and the user is not logged in, they will be redirected to login_url
(another application setting). The example above could be rewritten:

class MainHandler(BaseHandler):
@tornado.web.authenticated
def get(self):

1.7. User authentication 7

http://en.wikipedia.org/wiki/HMAC
http://www.python.org/dev/peps/pep-0318/

Tornado Documentation, Release 3.1

name = tornado.escape.xhtml_escape(self.current_user)
self.write("Hello, " + name)

settings = {
"cookie_secret": "__TODO:_GENERATE_YOUR_OWN_RANDOM_VALUE_HERE__",
"login_url": "/login",

}
application = tornado.web.Application([

(r"/", MainHandler),
(r"/login", LoginHandler),

], **settings)

If you decorate post() methods with the authenticated decorator, and the user is not logged in, the server will
send a 403 response.

Tornado comes with built-in support for third-party authentication schemes like Google OAuth. See the tornado.
auth for more details. Check out the Tornado Blog example application for a complete example that uses authenti-
cation (and stores user data in a MySQL database).

Cross-site request forgery protection

Cross-site request forgery, or XSRF, is a common problem for personalized web applications. See the Wikipedia
article for more information on how XSRF works.

The generally accepted solution to prevent XSRF is to cookie every user with an unpredictable value and include that
value as an additional argument with every form submission on your site. If the cookie and the value in the form
submission do not match, then the request is likely forged.

Tornado comes with built-in XSRF protection. To include it in your site, include the application setting
xsrf_cookies:

settings = {
"cookie_secret": "__TODO:_GENERATE_YOUR_OWN_RANDOM_VALUE_HERE__",
"login_url": "/login",
"xsrf_cookies": True,

}
application = tornado.web.Application([

(r"/", MainHandler),
(r"/login", LoginHandler),

], **settings)

If xsrf_cookies is set, the Tornado web application will set the _xsrf cookie for all users and reject all
POST, PUT, and DELETE requests that do not contain a correct _xsrf value. If you turn this setting on, you
need to instrument all forms that submit via POST to contain this field. You can do this with the special function
xsrf_form_html(), available in all templates:

<form action="/new_message" method="post">
{% module xsrf_form_html() %}
<input type="text" name="message"/>
<input type="submit" value="Post"/>

</form>

If you submit AJAX POST requests, you will also need to instrument your JavaScript to include the _xsrf value with
each request. This is the jQuery function we use at FriendFeed for AJAX POST requests that automatically adds the
_xsrf value to all requests:

8 Chapter 1. Overview

https://github.com/facebook/tornado/tree/master/demos/blog
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://jquery.com/

Tornado Documentation, Release 3.1

function getCookie(name) {
var r = document.cookie.match("\\b" + name + "=([^;]*)\\b");
return r ? r[1] : undefined;

}

jQuery.postJSON = function(url, args, callback) {
args._xsrf = getCookie("_xsrf");
$.ajax({url: url, data: $.param(args), dataType: "text", type: "POST",

success: function(response) {
callback(eval("(" + response + ")"));

}});
};

For PUT and DELETE requests (as well as POST requests that do not use form-encoded arguments), the XSRF
token may also be passed via an HTTP header named X-XSRFToken. The XSRF cookie is normally set when
xsrf_form_html is used, but in a pure-Javascript application that does not use any regular forms you may need to
access self.xsrf_token manually (just reading the property is enough to set the cookie as a side effect).

If you need to customize XSRF behavior on a per-handler basis, you can override RequestHandler.
check_xsrf_cookie(). For example, if you have an API whose authentication does not use cookies, you may
want to disable XSRF protection by making check_xsrf_cookie() do nothing. However, if you support both
cookie and non-cookie-based authentication, it is important that XSRF protection be used whenever the current request
is authenticated with a cookie.

Static files and aggressive file caching

You can serve static files from Tornado by specifying the static_path setting in your application:

settings = {
"static_path": os.path.join(os.path.dirname(__file__), "static"),
"cookie_secret": "__TODO:_GENERATE_YOUR_OWN_RANDOM_VALUE_HERE__",
"login_url": "/login",
"xsrf_cookies": True,

}
application = tornado.web.Application([

(r"/", MainHandler),
(r"/login", LoginHandler),
(r"/(apple-touch-icon\.png)", tornado.web.StaticFileHandler,
dict(path=settings['static_path'])),

], **settings)

This setting will automatically make all requests that start with /static/ serve from that static directory, e.g.,
http://localhost:8888/static/foo.png will serve the file foo.png from the specified static directory. We also automat-
ically serve /robots.txt and /favicon.ico from the static directory (even though they don’t start with the
/static/ prefix).

In the above settings, we have explicitly configured Tornado to serve apple-touch-icon.png “from” the root
with the StaticFileHandler, though it is physically in the static file directory. (The capturing group in that
regular expression is necessary to tell StaticFileHandler the requested filename; capturing groups are passed
to handlers as method arguments.) You could do the same thing to serve e.g. sitemap.xml from the site root. Of
course, you can also avoid faking a root apple-touch-icon.png by using the appropriate <link /> tag in
your HTML.

To improve performance, it is generally a good idea for browsers to cache static resources aggressively so browsers
won’t send unnecessary If-Modified-Since or Etag requests that might block the rendering of the page. Tor-

1.9. Static files and aggressive file caching 9

http://localhost:8888/static/foo.png

Tornado Documentation, Release 3.1

nado supports this out of the box with static content versioning.

To use this feature, use the static_url() method in your templates rather than typing the URL of the static file
directly in your HTML:

<html>
<head>

<title>FriendFeed - {{ _("Home") }}</title>
</head>
<body>

<div></div>
</body>

</html>

The static_url() function will translate that relative path to a URI that looks like /static/images/logo.
png?v=aae54. The v argument is a hash of the content in logo.png, and its presence makes the Tornado server
send cache headers to the user’s browser that will make the browser cache the content indefinitely.

Since the v argument is based on the content of the file, if you update a file and restart your server, it will start sending a
new v value, so the user’s browser will automatically fetch the new file. If the file’s contents don’t change, the browser
will continue to use a locally cached copy without ever checking for updates on the server, significantly improving
rendering performance.

In production, you probably want to serve static files from a more optimized static file server like nginx. You can con-
figure most any web server to support these caching semantics. Here is the nginx configuration we use at FriendFeed:

location /static/ {
root /var/friendfeed/static;
if ($query_string) {

expires max;
}

}

Localization

The locale of the current user (whether they are logged in or not) is always available as self.locale in the request
handler and as locale in templates. The name of the locale (e.g., en_US) is available as locale.name, and
you can translate strings with the locale.translate method. Templates also have the global function call _()
available for string translation. The translate function has two forms:

_("Translate this string")

which translates the string directly based on the current locale, and

_("A person liked this", "%(num)d people liked this",
len(people)) % {"num": len(people)}

which translates a string that can be singular or plural based on the value of the third argument. In the example above,
a translation of the first string will be returned if len(people) is 1, or a translation of the second string will be
returned otherwise.

The most common pattern for translations is to use Python named placeholders for variables (the %(num)d in the
example above) since placeholders can move around on translation.

Here is a properly localized template:

10 Chapter 1. Overview

http://nginx.net/

Tornado Documentation, Release 3.1

<html>
<head>

<title>FriendFeed - {{ _("Sign in") }}</title>
</head>
<body>

<form action="{{ request.path }}" method="post">
<div>{{ _("Username") }} <input type="text" name="username"/></div>
<div>{{ _("Password") }} <input type="password" name="password"/></div>
<div><input type="submit" value="{{ _("Sign in") }}"/></div>
{% module xsrf_form_html() %}

</form>
</body>

</html>

By default, we detect the user’s locale using the Accept-Language header sent by the user’s browser. We choose
en_US if we can’t find an appropriate Accept-Language value. If you let user’s set their locale as a preference,
you can override this default locale selection by overriding get_user_locale in your request handler:

class BaseHandler(tornado.web.RequestHandler):
def get_current_user(self):

user_id = self.get_secure_cookie("user")
if not user_id: return None
return self.backend.get_user_by_id(user_id)

def get_user_locale(self):
if "locale" not in self.current_user.prefs:

Use the Accept-Language header
return None

return self.current_user.prefs["locale"]

If get_user_locale returns None, we fall back on the Accept-Language header.

You can load all the translations for your application using the tornado.locale.load_translations
method. It takes in the name of the directory which should contain CSV files named after the locales whose transla-
tions they contain, e.g., es_GT.csv or fr_CA.csv. The method loads all the translations from those CSV files and
infers the list of supported locales based on the presence of each CSV file. You typically call this method once in the
main() method of your server:

def main():
tornado.locale.load_translations(

os.path.join(os.path.dirname(__file__), "translations"))
start_server()

You can get the list of supported locales in your application with tornado.locale.
get_supported_locales(). The user’s locale is chosen to be the closest match based on the supported
locales. For example, if the user’s locale is es_GT, and the es locale is supported, self.locale will be es for
that request. We fall back on en_US if no close match can be found.

See the tornado.locale documentation for detailed information on the CSV format and other localization meth-
ods.

UI modules

Tornado supports UI modules to make it easy to support standard, reusable UI widgets across your application. UI
modules are like special functional calls to render components of your page, and they can come packaged with their
own CSS and JavaScript.

1.11. UI modules 11

Tornado Documentation, Release 3.1

For example, if you are implementing a blog, and you want to have blog entries appear on both the blog home page
and on each blog entry page, you can make an Entry module to render them on both pages. First, create a Python
module for your UI modules, e.g., uimodules.py:

class Entry(tornado.web.UIModule):
def render(self, entry, show_comments=False):

return self.render_string(
"module-entry.html", entry=entry, show_comments=show_comments)

Tell Tornado to use uimodules.py using the ui_modules setting in your application:

class HomeHandler(tornado.web.RequestHandler):
def get(self):

entries = self.db.query("SELECT * FROM entries ORDER BY date DESC")
self.render("home.html", entries=entries)

class EntryHandler(tornado.web.RequestHandler):
def get(self, entry_id):

entry = self.db.get("SELECT * FROM entries WHERE id = %s", entry_id)
if not entry: raise tornado.web.HTTPError(404)
self.render("entry.html", entry=entry)

settings = {
"ui_modules": uimodules,

}
application = tornado.web.Application([

(r"/", HomeHandler),
(r"/entry/([0-9]+)", EntryHandler),

], **settings)

Within home.html, you reference the Entry module rather than printing the HTML directly:

{% for entry in entries %}
{% module Entry(entry) %}

{% end %}

Within entry.html, you reference the Entry module with the show_comments argument to show the expanded
form of the entry:

{% module Entry(entry, show_comments=True) %}

Modules can include custom CSS and JavaScript functions by overriding the embedded_css,
embedded_javascript, javascript_files, or css_files methods:

class Entry(tornado.web.UIModule):
def embedded_css(self):

return ".entry { margin-bottom: 1em; }"

def render(self, entry, show_comments=False):
return self.render_string(

"module-entry.html", show_comments=show_comments)

Module CSS and JavaScript will be included once no matter how many times a module is used on a page. CSS is
always included in the <head> of the page, and JavaScript is always included just before the </body> tag at the end
of the page.

When additional Python code is not required, a template file itself may be used as a module. For example, the preceding
example could be rewritten to put the following in module-entry.html:

12 Chapter 1. Overview

Tornado Documentation, Release 3.1

{{ set_resources(embedded_css=".entry { margin-bottom: 1em; }") }}
<!-- more template html... -->

This revised template module would be invoked with

{% module Template("module-entry.html", show_comments=True) %}

The set_resources function is only available in templates invoked via {% module Template(...) %}.
Unlike the {% include ... %} directive, template modules have a distinct namespace from their containing
template - they can only see the global template namespace and their own keyword arguments.

Non-blocking, asynchronous requests

When a request handler is executed, the request is automatically finished. Since Tornado uses a non-blocking I/O
style, you can override this default behavior if you want a request to remain open after the main request handler
method returns using the tornado.web.asynchronous decorator.

When you use this decorator, it is your responsibility to call self.finish() to finish the HTTP request, or the
user’s browser will simply hang:

class MainHandler(tornado.web.RequestHandler):
@tornado.web.asynchronous
def get(self):

self.write("Hello, world")
self.finish()

Here is a real example that makes a call to the FriendFeed API using Tornado’s built-in asynchronous HTTP client:

class MainHandler(tornado.web.RequestHandler):
@tornado.web.asynchronous
def get(self):

http = tornado.httpclient.AsyncHTTPClient()
http.fetch("http://friendfeed-api.com/v2/feed/bret",

callback=self.on_response)

def on_response(self, response):
if response.error: raise tornado.web.HTTPError(500)
json = tornado.escape.json_decode(response.body)
self.write("Fetched " + str(len(json["entries"])) + " entries "

"from the FriendFeed API")
self.finish()

When get() returns, the request has not finished. When the HTTP client eventually calls on_response(), the
request is still open, and the response is finally flushed to the client with the call to self.finish().

For a more advanced asynchronous example, take a look at the chat example application, which implements an AJAX
chat room using long polling. Users of long polling may want to override on_connection_close() to clean up
after the client closes the connection (but see that method’s docstring for caveats).

Asynchronous HTTP clients

Tornado includes two non-blocking HTTP client implementations: SimpleAsyncHTTPClient and
CurlAsyncHTTPClient. The simple client has no external dependencies because it is implemented directly on

1.12. Non-blocking, asynchronous requests 13

https://github.com/facebook/tornado/tree/master/demos/chat
http://en.wikipedia.org/wiki/Push_technology#Long_polling

Tornado Documentation, Release 3.1

top of Tornado’s IOLoop. The Curl client requires that libcurl and pycurl be installed (and a recent version
of each is highly recommended to avoid bugs in older version’s asynchronous interfaces), but is more likely to be
compatible with sites that exercise little-used parts of the HTTP specification.

Each of these clients is available in its own module (tornado.simple_httpclient and
tornado.curl_httpclient), as well as via a configurable alias in tornado.httpclient.
SimpleAsyncHTTPClient is the default, but to use a different implementation call the AsyncHTTPClient.
configure method at startup:

AsyncHTTPClient.configure('tornado.curl_httpclient.CurlAsyncHTTPClient')

Third party authentication

Tornado’s auth module implements the authentication and authorization protocols for a number of the most popular
sites on the web, including Google/Gmail, Facebook, Twitter, and FriendFeed. The module includes methods to log
users in via these sites and, where applicable, methods to authorize access to the service so you can, e.g., download a
user’s address book or publish a Twitter message on their behalf.

Here is an example handler that uses Google for authentication, saving the Google credentials in a cookie for later
access:

class GoogleHandler(tornado.web.RequestHandler, tornado.auth.GoogleMixin):
@tornado.web.asynchronous
def get(self):

if self.get_argument("openid.mode", None):
self.get_authenticated_user(self._on_auth)
return

self.authenticate_redirect()

def _on_auth(self, user):
if not user:

self.authenticate_redirect()
return

Save the user with, e.g., set_secure_cookie()

See the tornado.auth module documentation for more details.

Debug mode and automatic reloading

If you pass debug=True to the Application constructor, the app will be run in debug/development mode. In this
mode, several features intended for convenience while developing will be enabled:

• The app will watch for changes to its source files and reload itself when anything changes. This reduces the need
to manually restart the server during development. However, certain failures (such as syntax errors at import
time) can still take the server down in a way that debug mode cannot currently recover from.

• Templates will not be cached, nor will static file hashes (used by the static_url function)

• When an exception in a RequestHandler is not caught, an error page including a stack trace will be gener-
ated.

Debug mode is not compatible with HTTPServer‘s multi-process mode. You must not give HTTPServer.start
an argument other than 1 (or call tornado.process.fork_processes) if you are using debug mode.

14 Chapter 1. Overview

Tornado Documentation, Release 3.1

The automatic reloading feature of debug mode is available as a standalone module in tornado.autoreload. The
two can be used in combination to provide extra robustness against syntax errors: set debug=True within the app
to detect changes while it is running, and start it with python -m tornado.autoreload myserver.py to
catch any syntax errors or other errors at startup.

Reloading loses any Python interpreter command-line arguments (e.g. -u) because it re-executes Python using sys.
executable and sys.argv. Additionally, modifying these variables will cause reloading to behave incorrectly.

On some platforms (including Windows and Mac OSX prior to 10.6), the process cannot be updated “in-place”, so
when a code change is detected the old server exits and a new one starts. This has been known to confuse some IDEs.

Running Tornado in production

At FriendFeed, we use nginx as a load balancer and static file server. We run multiple instances of the Tornado web
server on multiple frontend machines. We typically run one Tornado frontend per core on the machine (sometimes
more depending on utilization).

When running behind a load balancer like nginx, it is recommended to pass xheaders=True to the HTTPServer
constructor. This will tell Tornado to use headers like X-Real-IP to get the user’s IP address instead of attributing
all traffic to the balancer’s IP address.

This is a barebones nginx config file that is structurally similar to the one we use at FriendFeed. It assumes nginx and
the Tornado servers are running on the same machine, and the four Tornado servers are running on ports 8000 - 8003:

user nginx;
worker_processes 1;

error_log /var/log/nginx/error.log;
pid /var/run/nginx.pid;

events {
worker_connections 1024;
use epoll;

}

http {
Enumerate all the Tornado servers here
upstream frontends {

server 127.0.0.1:8000;
server 127.0.0.1:8001;
server 127.0.0.1:8002;
server 127.0.0.1:8003;

}

include /etc/nginx/mime.types;
default_type application/octet-stream;

access_log /var/log/nginx/access.log;

keepalive_timeout 65;
proxy_read_timeout 200;
sendfile on;
tcp_nopush on;
tcp_nodelay on;
gzip on;
gzip_min_length 1000;
gzip_proxied any;

1.16. Running Tornado in production 15

http://nginx.net/

Tornado Documentation, Release 3.1

gzip_types text/plain text/html text/css text/xml
application/x-javascript application/xml
application/atom+xml text/javascript;

Only retry if there was a communication error, not a timeout
on the Tornado server (to avoid propagating "queries of death"
to all frontends)
proxy_next_upstream error;

server {
listen 80;

Allow file uploads
client_max_body_size 50M;

location ^~ /static/ {
root /var/www;
if ($query_string) {

expires max;
}

}
location = /favicon.ico {

rewrite (.*) /static/favicon.ico;
}
location = /robots.txt {

rewrite (.*) /static/robots.txt;
}

location / {
proxy_pass_header Server;
proxy_set_header Host $http_host;
proxy_redirect false;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Scheme $scheme;
proxy_pass http://frontends;

}
}

}

WSGI and Google AppEngine

Tornado comes with limited support for WSGI. However, since WSGI does not support non-blocking requests, you
cannot use any of the asynchronous/non-blocking features of Tornado in your application if you choose to use WSGI
instead of Tornado’s HTTP server. Some of the features that are not available in WSGI applications: @tornado.
web.asynchronous, the httpclient module, and the auth module.

You can create a valid WSGI application from your Tornado request handlers by using WSGIApplication in the
wsgi module instead of using tornado.web.Application. Here is an example that uses the built-in WSGI
CGIHandler to make a valid Google AppEngine application:

import tornado.web
import tornado.wsgi
import wsgiref.handlers

class MainHandler(tornado.web.RequestHandler):

16 Chapter 1. Overview

http://wsgi.org/
http://code.google.com/appengine/

Tornado Documentation, Release 3.1

def get(self):
self.write("Hello, world")

if __name__ == "__main__":
application = tornado.wsgi.WSGIApplication([

(r"/", MainHandler),
])
wsgiref.handlers.CGIHandler().run(application)

See the appengine example application for a full-featured AppEngine app built on Tornado.

1.17. WSGI and Google AppEngine 17

https://github.com/facebook/tornado/tree/master/demos/appengine

Tornado Documentation, Release 3.1

18 Chapter 1. Overview

CHAPTER 2

Core web framework

tornado.web — RequestHandler and Application classes

tornado.web provides a simple web framework with asynchronous features that allow it to scale to large numbers
of open connections, making it ideal for long polling.

Here is a simple “Hello, world” example app:

import tornado.ioloop
import tornado.web

class MainHandler(tornado.web.RequestHandler):
def get(self):

self.write("Hello, world")

if __name__ == "__main__":
application = tornado.web.Application([

(r"/", MainHandler),
])
application.listen(8888)
tornado.ioloop.IOLoop.instance().start()

See the Tornado overview for more details and a good getting started guide.

Thread-safety notes

In general, methods on RequestHandler and elsewhere in Tornado are not thread-safe. In particular, methods such
as write(), finish(), and flush() must only be called from the main thread. If you use multiple threads it is
important to use IOLoop.add_callback to transfer control back to the main thread before finishing the request.

19

http://en.wikipedia.org/wiki/Push_technology#Long_polling

Tornado Documentation, Release 3.1

Request handlers

class tornado.web.RequestHandler(application, request, **kwargs)
Subclass this class and define get() or post() to make a handler.

If you want to support more methods than the standard GET/HEAD/POST, you should override the class variable
SUPPORTED_METHODS in your RequestHandler subclass.

Entry points

RequestHandler.initialize()
Hook for subclass initialization.

A dictionary passed as the third argument of a url spec will be supplied as keyword arguments to initialize().

Example:

class ProfileHandler(RequestHandler):
def initialize(self, database):

self.database = database

def get(self, username):
...

app = Application([
(r'/user/(.*)', ProfileHandler, dict(database=database)),
])

RequestHandler.prepare()
Called at the beginning of a request before get/post/etc.

Override this method to perform common initialization regardless of the request method.

Asynchronous support: Decorate this method with gen.coroutine or return_future to make it asyn-
chronous (the asynchronous decorator cannot be used on prepare). If this method returns a Future
execution will not proceed until the Future is done.

New in version 3.1: Asynchronous support.

RequestHandler.on_finish()
Called after the end of a request.

Override this method to perform cleanup, logging, etc. This method is a counterpart to prepare. on_finish
may not produce any output, as it is called after the response has been sent to the client.

Implement any of the following methods (collectively known as the HTTP verb methods) to handle the corresponding
HTTP method. These methods can be made asynchronous with one of the following decorators: gen.coroutine,
return_future, or asynchronous.

RequestHandler.get(*args, **kwargs)

RequestHandler.post(*args, **kwargs)

RequestHandler.put(*args, **kwargs)

RequestHandler.delete(*args, **kwargs)

RequestHandler.head(*args, **kwargs)

RequestHandler.options(*args, **kwargs)

20 Chapter 2. Core web framework

Tornado Documentation, Release 3.1

Input

RequestHandler.get_argument(name, default=[], strip=True)
Returns the value of the argument with the given name.

If default is not provided, the argument is considered to be required, and we raise a
MissingArgumentError if it is missing.

If the argument appears in the url more than once, we return the last value.

The returned value is always unicode.

RequestHandler.get_arguments(name, strip=True)
Returns a list of the arguments with the given name.

If the argument is not present, returns an empty list.

The returned values are always unicode.

RequestHandler.decode_argument(value, name=None)
Decodes an argument from the request.

The argument has been percent-decoded and is now a byte string. By default, this method decodes the argument
as utf-8 and returns a unicode string, but this may be overridden in subclasses.

This method is used as a filter for both get_argument() and for values extracted from the url and passed to
get()/post()/etc.

The name of the argument is provided if known, but may be None (e.g. for unnamed groups in the url regex).

RequestHandler.request
The tornado.httpserver.HTTPRequest object containing additional request parameters including e.g.
headers and body data.

RequestHandler.path_args

RequestHandler.path_kwargs
The path_args and path_kwargs attributes contain the positional and keyword arguments that are passed
to the HTTP verb methods. These attributes are set before those methods are called, so the values are available
during prepare.

Output

RequestHandler.set_status(status_code, reason=None)
Sets the status code for our response.

Parameters

• status_code (int) – Response status code. If reason is None, it must be present in
httplib.responses.

• reason (string) – Human-readable reason phrase describing the status code. If None,
it will be filled in from httplib.responses.

RequestHandler.set_header(name, value)
Sets the given response header name and value.

If a datetime is given, we automatically format it according to the HTTP specification. If the value is not a
string, we convert it to a string. All header values are then encoded as UTF-8.

RequestHandler.add_header(name, value)
Adds the given response header and value.

2.1. tornado.web — RequestHandler and Application classes 21

http://python.readthedocs.io/en/latest/library/functions.html#int
http://python.readthedocs.io/en/latest/library/http.client.html#http.client.responses
http://python.readthedocs.io/en/latest/library/string.html#module-string
http://python.readthedocs.io/en/latest/library/http.client.html#http.client.responses

Tornado Documentation, Release 3.1

Unlike set_header, add_header may be called multiple times to return multiple values for the same
header.

RequestHandler.clear_header(name)
Clears an outgoing header, undoing a previous set_header call.

Note that this method does not apply to multi-valued headers set by add_header.

RequestHandler.set_default_headers()
Override this to set HTTP headers at the beginning of the request.

For example, this is the place to set a custom Server header. Note that setting such headers in the normal flow
of request processing may not do what you want, since headers may be reset during error handling.

RequestHandler.write(chunk)
Writes the given chunk to the output buffer.

To write the output to the network, use the flush() method below.

If the given chunk is a dictionary, we write it as JSON and set the Content-Type of the response to be
application/json. (if you want to send JSON as a different Content-Type, call set_header after
calling write()).

Note that lists are not converted to JSON because of a potential cross-site security vulnerability. All
JSON output should be wrapped in a dictionary. More details at http://haacked.com/archive/2008/11/20/
anatomy-of-a-subtle-json-vulnerability.aspx

RequestHandler.flush(include_footers=False, callback=None)
Flushes the current output buffer to the network.

The callback argument, if given, can be used for flow control: it will be run when all flushed data has been
written to the socket. Note that only one flush callback can be outstanding at a time; if another flush occurs
before the previous flush’s callback has been run, the previous callback will be discarded.

RequestHandler.finish(chunk=None)
Finishes this response, ending the HTTP request.

RequestHandler.render(template_name, **kwargs)
Renders the template with the given arguments as the response.

RequestHandler.render_string(template_name, **kwargs)
Generate the given template with the given arguments.

We return the generated byte string (in utf8). To generate and write a template as a response, use render() above.

RequestHandler.get_template_namespace()
Returns a dictionary to be used as the default template namespace.

May be overridden by subclasses to add or modify values.

The results of this method will be combined with additional defaults in the tornado.template module and
keyword arguments to render or render_string.

RequestHandler.redirect(url, permanent=False, status=None)
Sends a redirect to the given (optionally relative) URL.

If the status argument is specified, that value is used as the HTTP status code; otherwise either 301 (perma-
nent) or 302 (temporary) is chosen based on the permanent argument. The default is 302 (temporary).

RequestHandler.send_error(status_code=500, **kwargs)
Sends the given HTTP error code to the browser.

If flush() has already been called, it is not possible to send an error, so this method will simply terminate the
response. If output has been written but not yet flushed, it will be discarded and replaced with the error page.

22 Chapter 2. Core web framework

http://haacked.com/archive/2008/11/20/anatomy-of-a-subtle-json-vulnerability.aspx
http://haacked.com/archive/2008/11/20/anatomy-of-a-subtle-json-vulnerability.aspx

Tornado Documentation, Release 3.1

Override write_error() to customize the error page that is returned. Additional keyword arguments are
passed through to write_error.

RequestHandler.write_error(status_code, **kwargs)
Override to implement custom error pages.

write_error may call write, render, set_header, etc to produce output as usual.

If this error was caused by an uncaught exception (including HTTPError), an exc_info triple will be available
as kwargs["exc_info"]. Note that this exception may not be the “current” exception for purposes of
methods like sys.exc_info() or traceback.format_exc.

For historical reasons, if a method get_error_html exists, it will be used instead of the default
write_error implementation. get_error_html returned a string instead of producing output normally,
and had different semantics for exception handling. Users of get_error_html are encouraged to convert
their code to override write_error instead.

RequestHandler.clear()
Resets all headers and content for this response.

Cookies

RequestHandler.cookies
An alias for self.request.cookies.

RequestHandler.get_cookie(name, default=None)
Gets the value of the cookie with the given name, else default.

RequestHandler.set_cookie(name, value, domain=None, expires=None, path=’/’, ex-
pires_days=None, **kwargs)

Sets the given cookie name/value with the given options.

Additional keyword arguments are set on the Cookie.Morsel directly. See http://docs.python.org/library/cookie.
html#morsel-objects for available attributes.

RequestHandler.clear_cookie(name, path=’/’, domain=None)
Deletes the cookie with the given name.

RequestHandler.clear_all_cookies()
Deletes all the cookies the user sent with this request.

RequestHandler.get_secure_cookie(name, value=None, max_age_days=31)
Returns the given signed cookie if it validates, or None.

The decoded cookie value is returned as a byte string (unlike get_cookie).

RequestHandler.set_secure_cookie(name, value, expires_days=30, **kwargs)
Signs and timestamps a cookie so it cannot be forged.

You must specify the cookie_secret setting in your Application to use this method. It should be a long,
random sequence of bytes to be used as the HMAC secret for the signature.

To read a cookie set with this method, use get_secure_cookie().

Note that the expires_days parameter sets the lifetime of the cookie in the browser, but is independent of
the max_age_days parameter to get_secure_cookie.

Secure cookies may contain arbitrary byte values, not just unicode strings (unlike regular cookies)

RequestHandler.create_signed_value(name, value)
Signs and timestamps a string so it cannot be forged.

2.1. tornado.web — RequestHandler and Application classes 23

http://docs.python.org/library/cookie.html#morsel-objects
http://docs.python.org/library/cookie.html#morsel-objects

Tornado Documentation, Release 3.1

Normally used via set_secure_cookie, but provided as a separate method for non-cookie uses. To decode a value
not stored as a cookie use the optional value argument to get_secure_cookie.

Other

RequestHandler.application
The Application object serving this request

RequestHandler.async_callback(callback, *args, **kwargs)
Obsolete - catches exceptions from the wrapped function.

This function is unnecessary since Tornado 1.1.

RequestHandler.check_xsrf_cookie()
Verifies that the _xsrf cookie matches the _xsrf argument.

To prevent cross-site request forgery, we set an _xsrf cookie and include the same value as a non-cookie field
with all POST requests. If the two do not match, we reject the form submission as a potential forgery.

The _xsrf value may be set as either a form field named _xsrf or in a custom HTTP header named
X-XSRFToken or X-CSRFToken (the latter is accepted for compatibility with Django).

See http://en.wikipedia.org/wiki/Cross-site_request_forgery

Prior to release 1.1.1, this check was ignored if the HTTP header X-Requested-With:
XMLHTTPRequest was present. This exception has been shown to be insecure and has been re-
moved. For more information please see http://www.djangoproject.com/weblog/2011/feb/08/security/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails

RequestHandler.compute_etag()
Computes the etag header to be used for this request.

By default uses a hash of the content written so far.

May be overridden to provide custom etag implementations, or may return None to disable tornado’s default
etag support.

RequestHandler.create_template_loader(template_path)
Returns a new template loader for the given path.

May be overridden by subclasses. By default returns a directory-based loader on the given path, using the
autoescape application setting. If a template_loader application setting is supplied, uses that instead.

RequestHandler.get_browser_locale(default=’en_US’)
Determines the user’s locale from Accept-Language header.

See http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4

RequestHandler.get_current_user()
Override to determine the current user from, e.g., a cookie.

RequestHandler.get_login_url()
Override to customize the login URL based on the request.

By default, we use the login_url application setting.

RequestHandler.get_status()
Returns the status code for our response.

RequestHandler.get_template_path()
Override to customize template path for each handler.

24 Chapter 2. Core web framework

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://www.djangoproject.com/weblog/2011/feb/08/security/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4

Tornado Documentation, Release 3.1

By default, we use the template_path application setting. Return None to load templates relative to the
calling file.

RequestHandler.get_user_locale()
Override to determine the locale from the authenticated user.

If None is returned, we fall back to get_browser_locale().

This method should return a tornado.locale.Locale object, most likely obtained via a call like
tornado.locale.get("en")

RequestHandler.log_exception(typ, value, tb)
Override to customize logging of uncaught exceptions.

By default logs instances of HTTPError as warnings without stack traces (on the tornado.general log-
ger), and all other exceptions as errors with stack traces (on the tornado.application logger).

New in version 3.1.

RequestHandler.on_connection_close()
Called in async handlers if the client closed the connection.

Override this to clean up resources associated with long-lived connections. Note that this method is called only
if the connection was closed during asynchronous processing; if you need to do cleanup after every request
override on_finish instead.

Proxies may keep a connection open for a time (perhaps indefinitely) after the client has gone away, so this
method may not be called promptly after the end user closes their connection.

RequestHandler.require_setting(name, feature=’this feature’)
Raises an exception if the given app setting is not defined.

RequestHandler.reverse_url(name, *args)
Alias for Application.reverse_url.

RequestHandler.settings
An alias for self.application.settings.

RequestHandler.static_url(path, include_host=None, **kwargs)
Returns a static URL for the given relative static file path.

This method requires you set the static_path setting in your application (which specifies the root directory
of your static files).

This method returns a versioned url (by default appending ?v=<signature>), which allows the static files
to be cached indefinitely. This can be disabled by passing include_version=False (in the default imple-
mentation; other static file implementations are not required to support this, but they may support other options).

By default this method returns URLs relative to the current host, but if include_host is true the URL
returned will be absolute. If this handler has an include_host attribute, that value will be used as the default
for all static_url calls that do not pass include_host as a keyword argument.

RequestHandler.xsrf_form_html()
An HTML <input/> element to be included with all POST forms.

It defines the _xsrf input value, which we check on all POST requests to prevent cross-site request forgery. If
you have set the xsrf_cookies application setting, you must include this HTML within all of your HTML
forms.

In a template, this method should be called with {% module xsrf_form_html() %}

See check_xsrf_cookie() above for more information.

2.1. tornado.web — RequestHandler and Application classes 25

Tornado Documentation, Release 3.1

Application configuration

class tornado.web.Application(handlers=None, default_host=’‘, transforms=None, wsgi=False,
**settings)

A collection of request handlers that make up a web application.

Instances of this class are callable and can be passed directly to HTTPServer to serve the application:

application = web.Application([
(r"/", MainPageHandler),

])
http_server = httpserver.HTTPServer(application)
http_server.listen(8080)
ioloop.IOLoop.instance().start()

The constructor for this class takes in a list of URLSpec objects or (regexp, request_class) tuples. When we
receive requests, we iterate over the list in order and instantiate an instance of the first request class whose regexp
matches the request path.

Each tuple can contain an optional third element, which should be a dictionary if it is present. That dic-
tionary is passed as keyword arguments to the contructor of the handler. This pattern is used for the
StaticFileHandler in this example (note that a StaticFileHandler can be installed automatically
with the static_path setting described below):

application = web.Application([
(r"/static/(.*)", web.StaticFileHandler, {"path": "/var/www"}),

])

We support virtual hosts with the add_handlers method, which takes in a host regular expression as the first
argument:

application.add_handlers(r"www\.myhost\.com", [
(r"/article/([0-9]+)", ArticleHandler),

])

You can serve static files by sending the static_path setting as a keyword argument. We will serve those
files from the /static/URI (this is configurable with the static_url_prefix setting), and we will serve
/favicon.ico and /robots.txt from the same directory. A custom subclass of StaticFileHandler
can be specified with the static_handler_class setting.

settings
Additional keyword arguments passed to the constructor are saved in the settings dictionary, and are
often referred to in documentation as “application settings”. Settings are used to customize various aspects
of Tornado (although in some cases richer customization is possible by overriding methods in a subclass
of RequestHandler). Some applications also like to use the settings dictionary as a way to make
application-specific settings available to handlers without using global variables. Settings used in Tornado
are described below.

General settings:

•debug: If True the application runs in debug mode, described in Debug mode and automatic reload-
ing.

•gzip: If True, responses in textual formats will be gzipped automatically.

•log_function: This function will be called at the end of every request to log the result (with
one argument, the RequestHandler object). The default implementation writes to the logging
module’s root logger. May also be customized by overriding Application.log_request.

26 Chapter 2. Core web framework

http://python.readthedocs.io/en/latest/library/logging.html#module-logging

Tornado Documentation, Release 3.1

•ui_modules and ui_methods: May be set to a mapping of UIModule or UI methods to be
made available to templates. May be set to a module, dictionary, or a list of modules and/or dicts. See
UI modules for more details.

Authentication and security settings:

•cookie_secret: Used by RequestHandler.get_secure_cookie and
set_secure_cookie to sign cookies.

•login_url: The authenticated decorator will redirect to this url if the user is not logged in.
Can be further customized by overriding RequestHandler.get_login_url

•xsrf_cookies: If true, Cross-site request forgery protection will be enabled.

•twitter_consumer_key, twitter_consumer_secret, friendfeed_consumer_key,
friendfeed_consumer_secret, google_consumer_key,
google_consumer_secret, facebook_api_key, facebook_secret: Used in the
tornado.auth module to authenticate to various APIs.

Template settings:

•autoescape: Controls automatic escaping for templates. May be set to None to disable escaping,
or to the name of a function that all output should be passed through. Defaults to "xhtml_escape".
Can be changed on a per-template basis with the {% autoescape %} directive.

•template_path: Directory containing template files. Can be further customized by overriding
RequestHandler.get_template_path

•template_loader: Assign to an instance of tornado.template.BaseLoader to cus-
tomize template loading. If this setting is used the template_path and autoescape
settings are ignored. Can be further customized by overriding RequestHandler.
create_template_loader.

Static file settings:

•static_path: Directory from which static files will be served.

•static_url_prefix: Url prefix for static files, defaults to "/static/".

•static_handler_class, static_handler_args: May be set to use a differ-
ent handler for static files instead of the default tornado.web.StaticFileHandler.
static_handler_args, if set, should be a dictionary of keyword arguments to be passed to
the handler’s initialize method.

listen(port, address=’‘, **kwargs)
Starts an HTTP server for this application on the given port.

This is a convenience alias for creating an HTTPServer object and calling its listen method. Keyword
arguments not supported by HTTPServer.listen are passed to the HTTPServer constructor. For
advanced uses (e.g. multi-process mode), do not use this method; create an HTTPServer and call its
TCPServer.bind/TCPServer.start methods directly.

Note that after calling this method you still need to call IOLoop.instance().start() to start the
server.

add_handlers(host_pattern, host_handlers)
Appends the given handlers to our handler list.

Host patterns are processed sequentially in the order they were added. All matching patterns will be
considered.

reverse_url(name, *args)
Returns a URL path for handler named name

2.1. tornado.web — RequestHandler and Application classes 27

Tornado Documentation, Release 3.1

The handler must be added to the application as a named URLSpec.

Args will be substituted for capturing groups in the URLSpec regex. They will be converted to strings if
necessary, encoded as utf8, and url-escaped.

log_request(handler)
Writes a completed HTTP request to the logs.

By default writes to the python root logger. To change this behavior either subclass Application and
override this method, or pass a function in the application settings dictionary as log_function.

class tornado.web.URLSpec(pattern, handler_class, kwargs=None, name=None)
Specifies mappings between URLs and handlers.

Parameters:

•pattern: Regular expression to be matched. Any groups in the regex will be passed in to the handler’s
get/post/etc methods as arguments.

•handler_class: RequestHandler subclass to be invoked.

•kwargs (optional): A dictionary of additional arguments to be passed to the handler’s constructor.

•name (optional): A name for this handler. Used by Application.reverse_url.

The URLSpec class is also available under the name tornado.web.url.

Decorators

tornado.web.asynchronous(method)
Wrap request handler methods with this if they are asynchronous.

This decorator is unnecessary if the method is also decorated with @gen.coroutine (it is legal but unneces-
sary to use the two decorators together, in which case @asynchronous must be first).

This decorator should only be applied to the HTTP verb methods; its behavior is undefined for any other method.
This decorator does not make a method asynchronous; it tells the framework that the method is asynchronous.
For this decorator to be useful the method must (at least sometimes) do something asynchronous.

If this decorator is given, the response is not finished when the method returns. It is up to the request handler to
call self.finish() to finish the HTTP request. Without this decorator, the request is automatically finished
when the get() or post() method returns. Example:

class MyRequestHandler(web.RequestHandler):
@web.asynchronous
def get(self):

http = httpclient.AsyncHTTPClient()
http.fetch("http://friendfeed.com/", self._on_download)

def _on_download(self, response):
self.write("Downloaded!")
self.finish()

New in version 3.1: The ability to use @gen.coroutine without @asynchronous.

tornado.web.authenticated(method)
Decorate methods with this to require that the user be logged in.

If the user is not logged in, they will be redirected to the configured login url.

28 Chapter 2. Core web framework

Tornado Documentation, Release 3.1

tornado.web.addslash(method)
Use this decorator to add a missing trailing slash to the request path.

For example, a request to /foo would redirect to /foo/ with this decorator. Your request handler mapping
should use a regular expression like r'/foo/?' in conjunction with using the decorator.

tornado.web.removeslash(method)
Use this decorator to remove trailing slashes from the request path.

For example, a request to /foo/ would redirect to /foo with this decorator. Your request handler mapping
should use a regular expression like r'/foo/*' in conjunction with using the decorator.

Everything else

exception tornado.web.HTTPError(status_code, log_message=None, *args, **kwargs)
An exception that will turn into an HTTP error response.

Raising an HTTPError is a convenient alternative to calling RequestHandler.send_error since it
automatically ends the current function.

Parameters

• status_code (int) – HTTP status code. Must be listed in httplib.responses
unless the reason keyword argument is given.

• log_message (string) – Message to be written to the log for this error (will not be
shown to the user unless the Application is in debug mode). May contain %s-style
placeholders, which will be filled in with remaining positional parameters.

• reason (string) – Keyword-only argument. The HTTP “reason” phrase to pass in
the status line along with status_code. Normally determined automatically from
status_code, but can be used to use a non-standard numeric code.

exception tornado.web.MissingArgumentError(arg_name)
Exception raised by RequestHandler.get_argument.

This is a subclass of HTTPError, so if it is uncaught a 400 response code will be used instead of 500 (and a
stack trace will not be logged).

New in version 3.1.

class tornado.web.UIModule(handler)
A re-usable, modular UI unit on a page.

UI modules often execute additional queries, and they can include additional CSS and JavaScript that will be
included in the output page, which is automatically inserted on page render.

render(*args, **kwargs)
Overridden in subclasses to return this module’s output.

embedded_javascript()
Returns a JavaScript string that will be embedded in the page.

javascript_files()
Returns a list of JavaScript files required by this module.

embedded_css()
Returns a CSS string that will be embedded in the page.

css_files()
Returns a list of CSS files required by this module.

2.1. tornado.web — RequestHandler and Application classes 29

http://python.readthedocs.io/en/latest/library/functions.html#int
http://python.readthedocs.io/en/latest/library/http.client.html#http.client.responses
http://python.readthedocs.io/en/latest/library/string.html#module-string
http://python.readthedocs.io/en/latest/library/string.html#module-string

Tornado Documentation, Release 3.1

html_head()
Returns a CSS string that will be put in the <head/> element

html_body()
Returns an HTML string that will be put in the <body/> element

render_string(path, **kwargs)
Renders a template and returns it as a string.

class tornado.web.ErrorHandler(application, request, **kwargs)
Generates an error response with status_code for all requests.

class tornado.web.FallbackHandler(application, request, **kwargs)
A RequestHandler that wraps another HTTP server callback.

The fallback is a callable object that accepts an HTTPRequest, such as an Application or tornado.
wsgi.WSGIContainer. This is most useful to use both Tornado RequestHandlers and WSGI in the
same server. Typical usage:

wsgi_app = tornado.wsgi.WSGIContainer(
django.core.handlers.wsgi.WSGIHandler())

application = tornado.web.Application([
(r"/foo", FooHandler),
(r".*", FallbackHandler, dict(fallback=wsgi_app),

])

class tornado.web.RedirectHandler(application, request, **kwargs)
Redirects the client to the given URL for all GET requests.

You should provide the keyword argument url to the handler, e.g.:

application = web.Application([
(r"/oldpath", web.RedirectHandler, {"url": "/newpath"}),

])

class tornado.web.StaticFileHandler(application, request, **kwargs)
A simple handler that can serve static content from a directory.

A StaticFileHandler is configured automatically if you pass the static_path keyword ar-
gument to Application. This handler can be customized with the static_url_prefix,
static_handler_class, and static_handler_args settings.

To map an additional path to this handler for a static data directory you would add a line to your application like:

application = web.Application([
(r"/content/(.*)", web.StaticFileHandler, {"path": "/var/www"}),

])

The handler constructor requires a path argument, which specifies the local root directory of the content to be
served.

Note that a capture group in the regex is required to parse the value for the path argument to the get() method
(different than the constructor argument above); see URLSpec for details.

To maximize the effectiveness of browser caching, this class supports versioned urls (by default using the argu-
ment ?v=). If a version is given, we instruct the browser to cache this file indefinitely. make_static_url
(also available as RequestHandler.static_url) can be used to construct a versioned url.

This handler is intended primarily for use in development and light-duty file serving; for heavy traffic it will
be more efficient to use a dedicated static file server (such as nginx or Apache). We support the HTTP
Accept-Ranges mechanism to return partial content (because some browsers require this functionality to

30 Chapter 2. Core web framework

Tornado Documentation, Release 3.1

be present to seek in HTML5 audio or video), but this handler should not be used with files that are too large to
fit comfortably in memory.

Subclassing notes

This class is designed to be extensible by subclassing, but because of the way static urls are generated with
class methods rather than instance methods, the inheritance patterns are somewhat unusual. Be sure to use the
@classmethod decorator when overriding a class method. Instance methods may use the attributes self.
path self.absolute_path, and self.modified.

To change the way static urls are generated (e.g. to match the behavior of another server or CDN), override
make_static_url, parse_url_path, get_cache_time, and/or get_version.

To replace all interaction with the filesystem (e.g. to serve static content from a database), over-
ride get_content, get_content_size, get_modified_time, get_absolute_path, and
validate_absolute_path.

Changed in version 3.1: Many of the methods for subclasses were added in Tornado 3.1.

compute_etag()
Sets the Etag header based on static url version.

This allows efficient If-None-Match checks against cached versions, and sends the correct Etag for
a partial response (i.e. the same Etag as the full file).

New in version 3.1.

set_headers()
Sets the content and caching headers on the response.

New in version 3.1.

should_return_304()
Returns True if the headers indicate that we should return 304.

New in version 3.1.

classmethod get_absolute_path(root, path)
Returns the absolute location of path relative to root.

root is the path configured for this StaticFileHandler (in most cases the static_path
Application setting).

This class method may be overridden in subclasses. By default it returns a filesystem path, but other strings
may be used as long as they are unique and understood by the subclass’s overridden get_content.

New in version 3.1.

validate_absolute_path(root, absolute_path)
Validate and return the absolute path.

root is the configured path for the StaticFileHandler, and path is the result of
get_absolute_path

This is an instance method called during request processing, so it may raise HTTPError or use methods
like RequestHandler.redirect (return None after redirecting to halt further processing). This is
where 404 errors for missing files are generated.

This method may modify the path before returning it, but note that any such modifications will not be
understood by make_static_url.

In instance methods, this method’s result is available as self.absolute_path.

New in version 3.1.

2.1. tornado.web — RequestHandler and Application classes 31

Tornado Documentation, Release 3.1

classmethod get_content(abspath, start=None, end=None)
Retrieve the content of the requested resource which is located at the given absolute path.

This class method may be overridden by subclasses. Note that its signature is different from other overrid-
able class methods (no settings argument); this is deliberate to ensure that abspath is able to stand
on its own as a cache key.

This method should either return a byte string or an iterator of byte strings. The latter is preferred for large
files as it helps reduce memory fragmentation.

New in version 3.1.

classmethod get_content_version(abspath)
Returns a version string for the resource at the given path.

This class method may be overridden by subclasses. The default implementation is a hash of the file’s
contents.

New in version 3.1.

get_content_size()
Retrieve the total size of the resource at the given path.

This method may be overridden by subclasses. It will only be called if a partial result is requested from
get_content

New in version 3.1.

get_modified_time()
Returns the time that self.absolute_path was last modified.

May be overridden in subclasses. Should return a datetime object or None.

New in version 3.1.

get_content_type()
Returns the Content-Type header to be used for this request.

New in version 3.1.

set_extra_headers(path)
For subclass to add extra headers to the response

get_cache_time(path, modified, mime_type)
Override to customize cache control behavior.

Return a positive number of seconds to make the result cacheable for that amount of time or 0 to mark
resource as cacheable for an unspecified amount of time (subject to browser heuristics).

By default returns cache expiry of 10 years for resources requested with v argument.

classmethod make_static_url(settings, path, include_version=True)
Constructs a versioned url for the given path.

This method may be overridden in subclasses (but note that it is a class method rather than an in-
stance method). Subclasses are only required to implement the signature make_static_url(cls,
settings, path); other keyword arguments may be passed through static_url but are not stan-
dard.

settings is the Application.settings dictionary. path is the static path being requested. The
url returned should be relative to the current host.

include_version determines whether the generated URL should include the query string containing
the version hash of the file corresponding to the given path.

32 Chapter 2. Core web framework

http://python.readthedocs.io/en/latest/library/datetime.html#datetime.datetime

Tornado Documentation, Release 3.1

parse_url_path(url_path)
Converts a static URL path into a filesystem path.

url_path is the path component of the URL with static_url_prefix removed. The return value
should be filesystem path relative to static_path.

This is the inverse of make_static_url.

classmethod get_version(settings, path)
Generate the version string to be used in static URLs.

settings is the Application.settings dictionary and path is the relative location of the re-
quested asset on the filesystem. The returned value should be a string, or None if no version could be
determined.

Changed in version 3.1: This method was previously recommended for subclasses to override;
get_content_version is now preferred as it allows the base class to handle caching of the result.

tornado.httpserver — Non-blocking HTTP server

A non-blocking, single-threaded HTTP server.

Typical applications have little direct interaction with the HTTPServer class except to start a server at the beginning
of the process (and even that is often done indirectly via tornado.web.Application.listen).

This module also defines the HTTPRequest class which is exposed via tornado.web.RequestHandler.
request.

HTTPRequest objects

class tornado.httpserver.HTTPRequest(method, uri, version=’HTTP/1.0’, headers=None,
body=None, remote_ip=None, protocol=None,
host=None, files=None, connection=None)

A single HTTP request.

All attributes are type str unless otherwise noted.

method
HTTP request method, e.g. “GET” or “POST”

uri
The requested uri.

path
The path portion of uri

query
The query portion of uri

version
HTTP version specified in request, e.g. “HTTP/1.1”

headers
HTTPHeaders dictionary-like object for request headers. Acts like a case-insensitive dictionary with
additional methods for repeated headers.

body
Request body, if present, as a byte string.

2.2. tornado.httpserver — Non-blocking HTTP server 33

http://python.readthedocs.io/en/latest/library/stdtypes.html#str

Tornado Documentation, Release 3.1

remote_ip
Client’s IP address as a string. If HTTPServer.xheaders is set, will pass along the real IP address
provided by a load balancer in the X-Real-Ip or X-Forwarded-For header.

Changed in version 3.1: The list format of X-Forwarded-For is now supported.

protocol
The protocol used, either “http” or “https”. If HTTPServer.xheaders is set, will pass along the
protocol used by a load balancer if reported via an X-Scheme header.

host
The requested hostname, usually taken from the Host header.

arguments
GET/POST arguments are available in the arguments property, which maps arguments names to lists of
values (to support multiple values for individual names). Names are of type str, while arguments are byte
strings. Note that this is different from RequestHandler.get_argument, which returns argument
values as unicode strings.

files
File uploads are available in the files property, which maps file names to lists of HTTPFile.

connection
An HTTP request is attached to a single HTTP connection, which can be accessed through the “connec-
tion” attribute. Since connections are typically kept open in HTTP/1.1, multiple requests can be handled
sequentially on a single connection.

supports_http_1_1()
Returns True if this request supports HTTP/1.1 semantics

cookies
A dictionary of Cookie.Morsel objects.

write(chunk, callback=None)
Writes the given chunk to the response stream.

finish()
Finishes this HTTP request on the open connection.

full_url()
Reconstructs the full URL for this request.

request_time()
Returns the amount of time it took for this request to execute.

get_ssl_certificate(binary_form=False)
Returns the client’s SSL certificate, if any.

To use client certificates, the HTTPServer must have been constructed with cert_reqs set in ssl_options,
e.g.:

server = HTTPServer(app,
ssl_options=dict(

certfile="foo.crt",
keyfile="foo.key",
cert_reqs=ssl.CERT_REQUIRED,
ca_certs="cacert.crt"))

By default, the return value is a dictionary (or None, if no client certificate is present). If binary_form
is true, a DER-encoded form of the certificate is returned instead. See SSLSocket.getpeercert() in the
standard library for more details. http://docs.python.org/library/ssl.html#sslsocket-objects

34 Chapter 2. Core web framework

http://python.readthedocs.io/en/latest/library/stdtypes.html#str
http://docs.python.org/library/ssl.html#sslsocket-objects

Tornado Documentation, Release 3.1

HTTP Server

class tornado.httpserver.HTTPServer(request_callback, no_keep_alive=False, io_loop=None,
xheaders=False, ssl_options=None, protocol=None,
**kwargs)

A non-blocking, single-threaded HTTP server.

A server is defined by a request callback that takes an HTTPRequest instance as an argument and writes a valid
HTTP response with HTTPRequest.write. HTTPRequest.finish finishes the request (but does not
necessarily close the connection in the case of HTTP/1.1 keep-alive requests). A simple example server that
echoes back the URI you requested:

import tornado.httpserver
import tornado.ioloop

def handle_request(request):
message = "You requested %s\n" % request.uri
request.write("HTTP/1.1 200 OK\r\nContent-Length: %d\r\n\r\n%s" % (

len(message), message))
request.finish()

http_server = tornado.httpserver.HTTPServer(handle_request)
http_server.listen(8888)
tornado.ioloop.IOLoop.instance().start()

HTTPServer is a very basic connection handler. It parses the request headers and body, but the request
callback is responsible for producing the response exactly as it will appear on the wire. This affords maximum
flexibility for applications to implement whatever parts of HTTP responses are required.

HTTPServer supports keep-alive connections by default (automatically for HTTP/1.1, or for HTTP/1.0
when the client requests Connection: keep-alive). This means that the request callback must gen-
erate a properly-framed response, using either the Content-Length header or Transfer-Encoding:
chunked. Applications that are unable to frame their responses properly should instead return a
Connection: close header in each response and pass no_keep_alive=True to the HTTPServer
constructor.

If xheaders is True, we support the X-Real-Ip/X-Forwarded-For and
X-Scheme/X-Forwarded-Proto headers, which override the remote IP and URI scheme/protocol
for all requests. These headers are useful when running Tornado behind a reverse proxy or load balancer. The
protocol argument can also be set to https if Tornado is run behind an SSL-decoding proxy that does not
set one of the supported xheaders.

To make this server serve SSL traffic, send the ssl_options dictionary argument with the arguments required
for the ssl.wrap_socket method, including certfile and keyfile. (In Python 3.2+ you can pass an
ssl.SSLContext object instead of a dict):

HTTPServer(applicaton, ssl_options={
"certfile": os.path.join(data_dir, "mydomain.crt"),
"keyfile": os.path.join(data_dir, "mydomain.key"),

})

HTTPServer initialization follows one of three patterns (the initialization methods are defined on tornado.
tcpserver.TCPServer):

1.listen: simple single-process:

server = HTTPServer(app)
server.listen(8888)
IOLoop.instance().start()

2.2. tornado.httpserver — Non-blocking HTTP server 35

http://python.readthedocs.io/en/latest/library/ssl.html#ssl.wrap_socket
http://python.readthedocs.io/en/latest/library/ssl.html#ssl.SSLContext

Tornado Documentation, Release 3.1

In many cases, tornado.web.Application.listen can be used to avoid the need to explicitly
create the HTTPServer.

2.bind/start: simple multi-process:

server = HTTPServer(app)
server.bind(8888)
server.start(0) # Forks multiple sub-processes
IOLoop.instance().start()

When using this interface, an IOLoop must not be passed to the HTTPServer constructor. start will
always start the server on the default singleton IOLoop.

3.add_sockets: advanced multi-process:

sockets = tornado.netutil.bind_sockets(8888)
tornado.process.fork_processes(0)
server = HTTPServer(app)
server.add_sockets(sockets)
IOLoop.instance().start()

The add_sockets interface is more complicated, but it can be used with tornado.process.
fork_processes to give you more flexibility in when the fork happens. add_sockets can also
be used in single-process servers if you want to create your listening sockets in some way other than
tornado.netutil.bind_sockets.

class tornado.httpserver.HTTPConnection(stream, address, request_callback,
no_keep_alive=False, xheaders=False, proto-
col=None)

Handles a connection to an HTTP client, executing HTTP requests.

We parse HTTP headers and bodies, and execute the request callback until the HTTP conection is closed.

set_close_callback(callback)
Sets a callback that will be run when the connection is closed.

Use this instead of accessing HTTPConnection.stream.set_close_callback directly (which
was the recommended approach prior to Tornado 3.0).

write(chunk, callback=None)
Writes a chunk of output to the stream.

finish()
Finishes the request.

tornado.template — Flexible output generation

A simple template system that compiles templates to Python code.

Basic usage looks like:

t = template.Template("<html>{{ myvalue }}</html>")
print t.generate(myvalue="XXX")

Loader is a class that loads templates from a root directory and caches the compiled templates:

36 Chapter 2. Core web framework

Tornado Documentation, Release 3.1

loader = template.Loader("/home/btaylor")
print loader.load("test.html").generate(myvalue="XXX")

We compile all templates to raw Python. Error-reporting is currently... uh, interesting. Syntax for the templates:

base.html
<html>

<head>
<title>{% block title %}Default title{% end %}</title>

</head>
<body>

{% for student in students %}
{% block student %}
{{ escape(student.name) }}

{% end %}
{% end %}

</body>

</html>

bold.html
{% extends "base.html" %}

{% block title %}A bolder title{% end %}

{% block student %}
{{ escape(student.name) }}

{% end %}

Unlike most other template systems, we do not put any restrictions on the expressions you can include in your state-
ments. if and for blocks get translated exactly into Python, you can do complex expressions like:

{% for student in [p for p in people if p.student and p.age > 23] %}
{{ escape(student.name) }}

{% end %}

Translating directly to Python means you can apply functions to expressions easily, like the escape() function in the
examples above. You can pass functions in to your template just like any other variable:

Python code
def add(x, y):

return x + y
template.execute(add=add)

The template
{{ add(1, 2) }}

We provide the functions escape(), url_escape(), json_encode(), and squeeze() to all templates by default.

Typical applications do not create Template or Loader instances by hand, but instead use the render and
render_string methods of tornado.web.RequestHandler, which load templates automatically based on
the template_path Application setting.

Variable names beginning with _tt_ are reserved by the template system and should not be used by application code.

2.3. tornado.template — Flexible output generation 37

Tornado Documentation, Release 3.1

Syntax Reference

Template expressions are surrounded by double curly braces: {{ ... }}. The contents may be any python expres-
sion, which will be escaped according to the current autoescape setting and inserted into the output. Other template
directives use {% %}. These tags may be escaped as {{! and {%! if you need to include a literal {{ or {% in the
output.

To comment out a section so that it is omitted from the output, surround it with {# ... #}.

{% apply *function* %}...{% end %} Applies a function to the output of all template code between
apply and end:

{% apply linkify %}{{name}} said: {{message}}{% end %}

Note that as an implementation detail apply blocks are implemented as nested functions and thus may interact
strangely with variables set via {% set %}, or the use of {% break %} or {% continue %} within
loops.

{% autoescape *function* %} Sets the autoescape mode for the current file. This does not affect other
files, even those referenced by {% include %}. Note that autoescaping can also be configured globally, at
the Application or Loader.:

{% autoescape xhtml_escape %}
{% autoescape None %}

{% block *name* %}...{% end %} Indicates a named, replaceable block for use with {% extends %}.
Blocks in the parent template will be replaced with the contents of the same-named block in a child template.:

<!-- base.html -->
<title>{% block title %}Default title{% end %}</title>

<!-- mypage.html -->
{% extends "base.html" %}
{% block title %}My page title{% end %}

{% comment ... %} A comment which will be removed from the template output. Note that there is no {% end
%} tag; the comment goes from the word comment to the closing %} tag.

{% extends *filename* %} Inherit from another template. Templates that use extends should contain one
or more block tags to replace content from the parent template. Anything in the child template not contained
in a block tag will be ignored. For an example, see the {% block %} tag.

{% for *var* in *expr* %}...{% end %} Same as the python for statement. {% break %} and {%
continue %} may be used inside the loop.

{% from *x* import *y* %} Same as the python import statement.

{% if *condition* %}...{% elif *condition* %}...{% else %}...{% end %}
Conditional statement - outputs the first section whose condition is true. (The elif and else sections
are optional)

{% import *module* %} Same as the python import statement.

{% include *filename* %} Includes another template file. The included file can see all the local variables
as if it were copied directly to the point of the include directive (the {% autoescape %} directive is an
exception). Alternately, {% module Template(filename, **kwargs) %} may be used to include
another template with an isolated namespace.

{% module *expr* %} Renders a UIModule. The output of the UIModule is not escaped:

38 Chapter 2. Core web framework

Tornado Documentation, Release 3.1

{% module Template("foo.html", arg=42) %}

{% raw *expr* %} Outputs the result of the given expression without autoescaping.

{% set *x* = *y* %} Sets a local variable.

{% try %}...{% except %}...{% finally %}...{% else %}...{% end %} Same as the
python try statement.

{% while *condition* %}... {% end %} Same as the python while statement. {% break %} and
{% continue %} may be used inside the loop.

Class reference

class tornado.template.Template(template_string, name=”<string>”, loader=None, com-
press_whitespace=None, autoescape=”xhtml_escape”)

A compiled template.

We compile into Python from the given template_string. You can generate the template from variables with
generate().

generate(**kwargs)
Generate this template with the given arguments.

class tornado.template.BaseLoader(autoescape=’xhtml_escape’, namespace=None)
Base class for template loaders.

You must use a template loader to use template constructs like {% extends %} and {% include %}. The
loader caches all templates after they are loaded the first time.

autoescape must be either None or a string naming a function in the template namespace, such as
“xhtml_escape”.

load(name, parent_path=None)
Loads a template.

reset()
Resets the cache of compiled templates.

resolve_path(name, parent_path=None)
Converts a possibly-relative path to absolute (used internally).

class tornado.template.Loader(root_directory, **kwargs)
A template loader that loads from a single root directory.

class tornado.template.DictLoader(dict, **kwargs)
A template loader that loads from a dictionary.

exception tornado.template.ParseError
Raised for template syntax errors.

tornado.escape — Escaping and string manipulation

Escaping/unescaping methods for HTML, JSON, URLs, and others.

Also includes a few other miscellaneous string manipulation functions that have crept in over time.

2.4. tornado.escape — Escaping and string manipulation 39

Tornado Documentation, Release 3.1

Escaping functions

tornado.escape.xhtml_escape(value)
Escapes a string so it is valid within HTML or XML.

tornado.escape.xhtml_unescape(value)
Un-escapes an XML-escaped string.

tornado.escape.url_escape(value, plus=True)
Returns a URL-encoded version of the given value.

If plus is true (the default), spaces will be represented as “+” instead of “%20”. This is appropriate for query
strings but not for the path component of a URL. Note that this default is the reverse of Python’s urllib module.

New in version 3.1: The plus argument

tornado.escape.url_unescape(value, encoding=’utf-8’, plus=True)
Decodes the given value from a URL.

The argument may be either a byte or unicode string.

If encoding is None, the result will be a byte string. Otherwise, the result is a unicode string in the specified
encoding.

If plus is true (the default), plus signs will be interpreted as spaces (literal plus signs must be represented as
“%2B”). This is appropriate for query strings and form-encoded values but not for the path component of a
URL. Note that this default is the reverse of Python’s urllib module.

New in version 3.1: The plus argument

tornado.escape.json_encode(value)
JSON-encodes the given Python object.

tornado.escape.json_decode(value)
Returns Python objects for the given JSON string.

Byte/unicode conversions

These functions are used extensively within Tornado itself, but should not be directly needed by most applications.
Note that much of the complexity of these functions comes from the fact that Tornado supports both Python 2 and
Python 3.

tornado.escape.utf8(value)
Converts a string argument to a byte string.

If the argument is already a byte string or None, it is returned unchanged. Otherwise it must be a unicode string
and is encoded as utf8.

tornado.escape.to_unicode(value)
Converts a string argument to a unicode string.

If the argument is already a unicode string or None, it is returned unchanged. Otherwise it must be a byte string
and is decoded as utf8.

tornado.escape.native_str()
Converts a byte or unicode string into type str. Equivalent to utf8 on Python 2 and to_unicode on Python
3.

tornado.escape.to_basestring(value)
Converts a string argument to a subclass of basestring.

40 Chapter 2. Core web framework

http://python.readthedocs.io/en/latest/library/stdtypes.html#str

Tornado Documentation, Release 3.1

In python2, byte and unicode strings are mostly interchangeable, so functions that deal with a user-supplied
argument in combination with ascii string constants can use either and should return the type the user supplied.
In python3, the two types are not interchangeable, so this method is needed to convert byte strings to unicode.

tornado.escape.recursive_unicode(obj)
Walks a simple data structure, converting byte strings to unicode.

Supports lists, tuples, and dictionaries.

Miscellaneous functions

tornado.escape.linkify(text, shorten=False, extra_params=’‘, require_protocol=False, permit-
ted_protocols=[’http’, ‘https’])

Converts plain text into HTML with links.

For example: linkify("Hello http://tornadoweb.org!") would return Hello http://tornadoweb.org!

Parameters:

•shorten: Long urls will be shortened for display.

•extra_params: Extra text to include in the link tag, or a callable taking the link as an argument
and returning the extra text e.g. linkify(text, extra_params='rel="nofollow"
class="external"'), or:

def extra_params_cb(url):
if url.startswith("http://example.com"):

return 'class="internal"'
else:

return 'class="external" rel="nofollow"'
linkify(text, extra_params=extra_params_cb)

•require_protocol: Only linkify urls which include a protocol. If this is False, urls such as
www.facebook.com will also be linkified.

•permitted_protocols: List (or set) of protocols which should be linkified, e.g.
linkify(text, permitted_protocols=["http", "ftp", "mailto"]). It is
very unsafe to include protocols such as javascript.

tornado.escape.squeeze(value)
Replace all sequences of whitespace chars with a single space.

tornado.locale — Internationalization support

Translation methods for generating localized strings.

To load a locale and generate a translated string:

user_locale = tornado.locale.get("es_LA")
print user_locale.translate("Sign out")

tornado.locale.get() returns the closest matching locale, not necessarily the specific locale you requested.
You can support pluralization with additional arguments to translate(), e.g.:

2.5. tornado.locale — Internationalization support 41

Tornado Documentation, Release 3.1

people = [...]
message = user_locale.translate(

"%(list)s is online", "%(list)s are online", len(people))
print message % {"list": user_locale.list(people)}

The first string is chosen if len(people) == 1, otherwise the second string is chosen.

Applications should call one of load_translations (which uses a simple CSV format) or
load_gettext_translations (which uses the .mo format supported by gettext and related tools).
If neither method is called, the Locale.translate method will simply return the original string.

tornado.locale.get(*locale_codes)
Returns the closest match for the given locale codes.

We iterate over all given locale codes in order. If we have a tight or a loose match for the code (e.g., “en” for
“en_US”), we return the locale. Otherwise we move to the next code in the list.

By default we return en_US if no translations are found for any of the specified locales. You can change the
default locale with set_default_locale().

tornado.locale.set_default_locale(code)
Sets the default locale.

The default locale is assumed to be the language used for all strings in the system. The translations loaded from
disk are mappings from the default locale to the destination locale. Consequently, you don’t need to create a
translation file for the default locale.

tornado.locale.load_translations(directory)
Loads translations from CSV files in a directory.

Translations are strings with optional Python-style named placeholders (e.g., My name is %(name)s) and
their associated translations.

The directory should have translation files of the form LOCALE.csv, e.g. es_GT.csv. The CSV files should
have two or three columns: string, translation, and an optional plural indicator. Plural indicators should be one
of “plural” or “singular”. A given string can have both singular and plural forms. For example %(name)s
liked this may have a different verb conjugation depending on whether %(name)s is one name or a list of
names. There should be two rows in the CSV file for that string, one with plural indicator “singular”, and one
“plural”. For strings with no verbs that would change on translation, simply use “unknown” or the empty string
(or don’t include the column at all).

The file is read using the csv module in the default “excel” dialect. In this format there should not be spaces
after the commas.

Example translation es_LA.csv:

"I love you","Te amo"
"%(name)s liked this","A %(name)s les gustó esto","plural"
"%(name)s liked this","A %(name)s le gustó esto","singular"

tornado.locale.load_gettext_translations(directory, domain)
Loads translations from gettext‘s locale tree

Locale tree is similar to system’s /usr/share/locale, like:

{directory}/{lang}/LC_MESSAGES/{domain}.mo

Three steps are required to have you app translated:

1.Generate POT translation file:

42 Chapter 2. Core web framework

http://python.readthedocs.io/en/latest/library/gettext.html#module-gettext
http://python.readthedocs.io/en/latest/library/csv.html#module-csv
http://python.readthedocs.io/en/latest/library/gettext.html#module-gettext

Tornado Documentation, Release 3.1

xgettext --language=Python --keyword=_:1,2 -d mydomain file1.py file2.html etc

2.Merge against existing POT file:

msgmerge old.po mydomain.po > new.po

3.Compile:

msgfmt mydomain.po -o {directory}/pt_BR/LC_MESSAGES/mydomain.mo

tornado.locale.get_supported_locales()
Returns a list of all the supported locale codes.

class tornado.locale.Locale(code, translations)
Object representing a locale.

After calling one of load_translations or load_gettext_translations, call get or
get_closest to get a Locale object.

classmethod get_closest(*locale_codes)
Returns the closest match for the given locale code.

classmethod get(code)
Returns the Locale for the given locale code.

If it is not supported, we raise an exception.

translate(message, plural_message=None, count=None)
Returns the translation for the given message for this locale.

If plural_message is given, you must also provide count. We return plural_message when
count != 1, and we return the singular form for the given message when count == 1.

format_date(date, gmt_offset=0, relative=True, shorter=False, full_format=False)
Formats the given date (which should be GMT).

By default, we return a relative time (e.g., “2 minutes ago”). You can return an absolute date string with
relative=False.

You can force a full format date (“July 10, 1980”) with full_format=True.

This method is primarily intended for dates in the past. For dates in the future, we fall back to full format.

format_day(date, gmt_offset=0, dow=True)
Formats the given date as a day of week.

Example: “Monday, January 22”. You can remove the day of week with dow=False.

list(parts)
Returns a comma-separated list for the given list of parts.

The format is, e.g., “A, B and C”, “A and B” or just “A” for lists of size 1.

friendly_number(value)
Returns a comma-separated number for the given integer.

class tornado.locale.CSVLocale(code, translations)
Locale implementation using tornado’s CSV translation format.

class tornado.locale.GettextLocale(code, translations)
Locale implementation using the gettext module.

2.5. tornado.locale — Internationalization support 43

http://python.readthedocs.io/en/latest/library/gettext.html#module-gettext

Tornado Documentation, Release 3.1

44 Chapter 2. Core web framework

CHAPTER 3

Asynchronous networking

tornado.gen — Simplify asynchronous code

tornado.gen is a generator-based interface to make it easier to work in an asynchronous environment. Code using
the gen module is technically asynchronous, but it is written as a single generator instead of a collection of separate
functions.

For example, the following asynchronous handler:

class AsyncHandler(RequestHandler):
@asynchronous
def get(self):

http_client = AsyncHTTPClient()
http_client.fetch("http://example.com",

callback=self.on_fetch)

def on_fetch(self, response):
do_something_with_response(response)
self.render("template.html")

could be written with gen as:

class GenAsyncHandler(RequestHandler):
@gen.coroutine
def get(self):

http_client = AsyncHTTPClient()
response = yield http_client.fetch("http://example.com")
do_something_with_response(response)
self.render("template.html")

Most asynchronous functions in Tornado return a Future; yielding this object returns its result.

For functions that do not return Futures, Task works with any function that takes a callback keyword argument
(most Tornado functions can be used in either style, although the Future style is preferred since it is both shorter
and provides better exception handling):

45

Tornado Documentation, Release 3.1

@gen.coroutine
def get(self):

yield gen.Task(AsyncHTTPClient().fetch, "http://example.com")

You can also yield a list of Futures and/or Tasks, which will be started at the same time and run in parallel; a list
of results will be returned when they are all finished:

@gen.coroutine
def get(self):

http_client = AsyncHTTPClient()
response1, response2 = yield [http_client.fetch(url1),

http_client.fetch(url2)]

For more complicated interfaces, Task can be split into two parts: Callback and Wait:

class GenAsyncHandler2(RequestHandler):
@asynchronous
@gen.coroutine
def get(self):

http_client = AsyncHTTPClient()
http_client.fetch("http://example.com",

callback=(yield gen.Callback("key"))
response = yield gen.Wait("key")
do_something_with_response(response)
self.render("template.html")

The key argument to Callback and Wait allows for multiple asynchronous operations to be started at different
times and proceed in parallel: yield several callbacks with different keys, then wait for them once all the async
operations have started.

The result of a Wait or Task yield expression depends on how the callback was run. If it was called with no
arguments, the result is None. If it was called with one argument, the result is that argument. If it was called with
more than one argument or any keyword arguments, the result is an Arguments object, which is a named tuple
(args, kwargs).

Decorators

tornado.gen.coroutine(func)
Decorator for asynchronous generators.

Any generator that yields objects from this module must be wrapped in either this decorator or engine.

Coroutines may “return” by raising the special exception Return(value). In Python 3.3+, it is also possible
for the function to simply use the return value statement (prior to Python 3.3 generators were not allowed
to also return values). In all versions of Python a coroutine that simply wishes to exit early may use the return
statement without a value.

Functions with this decorator return a Future. Additionally, they may be called with a callback keyword
argument, which will be invoked with the future’s result when it resolves. If the coroutine fails, the callback will
not be run and an exception will be raised into the surrounding StackContext. The callback argument is
not visible inside the decorated function; it is handled by the decorator itself.

From the caller’s perspective, @gen.coroutine is similar to the combination of @return_future and
@gen.engine.

tornado.gen.engine(func)
Callback-oriented decorator for asynchronous generators.

46 Chapter 3. Asynchronous networking

Tornado Documentation, Release 3.1

This is an older interface; for new code that does not need to be compatible with versions of Tornado older than
3.0 the coroutine decorator is recommended instead.

This decorator is similar to coroutine, except it does not return a Future and the callback argument is
not treated specially.

In most cases, functions decorated with engine should take a callback argument and invoke it with their
result when they are finished. One notable exception is the RequestHandler HTTP verb methods, which
use self.finish() in place of a callback argument.

Yield points

Instances of the following classes may be used in yield expressions in the generator. Futures may be yielded as
well; their result method will be called automatically when they are ready. Additionally, lists of any combination of
these objects may be yielded; the result is a list of the results of each yield point in the same order.

class tornado.gen.Task(func, *args, **kwargs)
Runs a single asynchronous operation.

Takes a function (and optional additional arguments) and runs it with those arguments plus a callback key-
word argument. The argument passed to the callback is returned as the result of the yield expression.

A Task is equivalent to a Callback/Wait pair (with a unique key generated automatically):

result = yield gen.Task(func, args)

func(args, callback=(yield gen.Callback(key)))
result = yield gen.Wait(key)

class tornado.gen.Callback(key)
Returns a callable object that will allow a matching Wait to proceed.

The key may be any value suitable for use as a dictionary key, and is used to match Callbacks to their
corresponding Waits. The key must be unique among outstanding callbacks within a single run of the generator
function, but may be reused across different runs of the same function (so constants generally work fine).

The callback may be called with zero or one arguments; if an argument is given it will be returned by Wait.

class tornado.gen.Wait(key)
Returns the argument passed to the result of a previous Callback.

class tornado.gen.WaitAll(keys)
Returns the results of multiple previous Callbacks.

The argument is a sequence of Callback keys, and the result is a list of results in the same order.

WaitAll is equivalent to yielding a list of Wait objects.

class tornado.gen.YieldPoint
Base class for objects that may be yielded from the generator.

Applications do not normally need to use this class, but it may be subclassed to provide additional yielding
behavior.

start(runner)
Called by the runner after the generator has yielded.

No other methods will be called on this object before start.

is_ready()
Called by the runner to determine whether to resume the generator.

3.1. tornado.gen — Simplify asynchronous code 47

Tornado Documentation, Release 3.1

Returns a boolean; may be called more than once.

get_result()
Returns the value to use as the result of the yield expression.

This method will only be called once, and only after is_ready has returned true.

Other classes

exception tornado.gen.Return(value=None)
Special exception to return a value from a coroutine.

If this exception is raised, its value argument is used as the result of the coroutine:

@gen.coroutine
def fetch_json(url):

response = yield AsyncHTTPClient().fetch(url)
raise gen.Return(json_decode(response.body))

In Python 3.3, this exception is no longer necessary: the return statement can be used directly to return a
value (previously yield and return with a value could not be combined in the same function).

By analogy with the return statement, the value argument is optional, but it is never necessary to raise gen.
Return(). The return statement can be used with no arguments instead.

class tornado.gen.Arguments
The result of a yield expression whose callback had more than one argument (or keyword arguments).

The Arguments object is a collections.namedtuple and can be used either as a tuple (args,
kwargs) or an object with attributes args and kwargs.

tornado.ioloop — Main event loop

An I/O event loop for non-blocking sockets.

Typical applications will use a single IOLoop object, in the IOLoop.instance singleton. The IOLoop.start
method should usually be called at the end of the main() function. Atypical applications may use more than one
IOLoop, such as one IOLoop per thread, or per unittest case.

In addition to I/O events, the IOLoop can also schedule time-based events. IOLoop.add_timeout is a non-
blocking alternative to time.sleep.

IOLoop objects

class tornado.ioloop.IOLoop
A level-triggered I/O loop.

We use epoll (Linux) or kqueue (BSD and Mac OS X) if they are available, or else we fall back on select().
If you are implementing a system that needs to handle thousands of simultaneous connections, you should use a
system that supports either epoll or kqueue.

Example usage for a simple TCP server:

import errno
import functools
import ioloop

48 Chapter 3. Asynchronous networking

http://python.readthedocs.io/en/latest/library/collections.html#collections.namedtuple
http://python.readthedocs.io/en/latest/library/unittest.html#module-unittest
http://python.readthedocs.io/en/latest/library/time.html#time.sleep

Tornado Documentation, Release 3.1

import socket

def connection_ready(sock, fd, events):
while True:

try:
connection, address = sock.accept()

except socket.error, e:
if e.args[0] not in (errno.EWOULDBLOCK, errno.EAGAIN):

raise
return

connection.setblocking(0)
handle_connection(connection, address)

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.setblocking(0)
sock.bind(("", port))
sock.listen(128)

io_loop = ioloop.IOLoop.instance()
callback = functools.partial(connection_ready, sock)
io_loop.add_handler(sock.fileno(), callback, io_loop.READ)
io_loop.start()

Running an IOLoop

static IOLoop.current()
Returns the current thread’s IOLoop.

If an IOLoop is currently running or has been marked as current by make_current, returns that instance.
Otherwise returns IOLoop.instance(), i.e. the main thread’s IOLoop.

A common pattern for classes that depend on IOLoops is to use a default argument to enable programs with
multiple IOLoops but not require the argument for simpler applications:

class MyClass(object):
def __init__(self, io_loop=None):

self.io_loop = io_loop or IOLoop.current()

In general you should use IOLoop.current as the default when constructing an asynchronous object, and
use IOLoop.instance when you mean to communicate to the main thread from a different one.

IOLoop.make_current()
Makes this the IOLoop for the current thread.

An IOLoop automatically becomes current for its thread when it is started, but it is sometimes useful to call
make_current explictly before starting the IOLoop, so that code run at startup time can find the right
instance.

static IOLoop.instance()
Returns a global IOLoop instance.

Most applications have a single, global IOLoop running on the main thread. Use this method to get this instance
from another thread. To get the current thread’s IOLoop, use current().

static IOLoop.initialized()
Returns true if the singleton instance has been created.

3.2. tornado.ioloop — Main event loop 49

Tornado Documentation, Release 3.1

IOLoop.install()
Installs this IOLoop object as the singleton instance.

This is normally not necessary as instance() will create an IOLoop on demand, but you may want to call
install to use a custom subclass of IOLoop.

IOLoop.start()
Starts the I/O loop.

The loop will run until one of the callbacks calls stop(), which will make the loop stop after the current event
iteration completes.

IOLoop.stop()
Stop the I/O loop.

If the event loop is not currently running, the next call to start() will return immediately.

To use asynchronous methods from otherwise-synchronous code (such as unit tests), you can start and stop the
event loop like this:

ioloop = IOLoop()
async_method(ioloop=ioloop, callback=ioloop.stop)
ioloop.start()

ioloop.start() will return after async_method has run its callback, whether that callback was invoked
before or after ioloop.start.

Note that even after stop has been called, the IOLoop is not completely stopped until IOLoop.start has
also returned. Some work that was scheduled before the call to stop may still be run before the IOLoop shuts
down.

IOLoop.run_sync(func, timeout=None)
Starts the IOLoop, runs the given function, and stops the loop.

If the function returns a Future, the IOLoop will run until the future is resolved. If it raises an exception, the
IOLoop will stop and the exception will be re-raised to the caller.

The keyword-only argument timeout may be used to set a maximum duration for the function. If the timeout
expires, a TimeoutError is raised.

This method is useful in conjunction with tornado.gen.coroutine to allow asynchronous calls in a
main() function:

@gen.coroutine
def main():

do stuff...

if __name__ == '__main__':
IOLoop.instance().run_sync(main)

IOLoop.close(all_fds=False)
Closes the IOLoop, freeing any resources used.

If all_fds is true, all file descriptors registered on the IOLoop will be closed (not just the ones created by the
IOLoop itself).

Many applications will only use a single IOLoop that runs for the entire lifetime of the process. In that case clos-
ing the IOLoop is not necessary since everything will be cleaned up when the process exits. IOLoop.close
is provided mainly for scenarios such as unit tests, which create and destroy a large number of IOLoops.

50 Chapter 3. Asynchronous networking

http://python.readthedocs.io/en/latest/library/exceptions.html#TimeoutError

Tornado Documentation, Release 3.1

An IOLoop must be completely stopped before it can be closed. This means that IOLoop.stop() must
be called and IOLoop.start() must be allowed to return before attempting to call IOLoop.close().
Therefore the call to close will usually appear just after the call to start rather than near the call to stop.

Changed in version 3.1: If the IOLoop implementation supports non-integer objects for “file descriptors”, those
objects will have their close method when all_fds is true.

I/O events

IOLoop.add_handler(fd, handler, events)
Registers the given handler to receive the given events for fd.

The events argument is a bitwise or of the constants IOLoop.READ, IOLoop.WRITE, and IOLoop.
ERROR.

When an event occurs, handler(fd, events) will be run.

IOLoop.update_handler(fd, events)
Changes the events we listen for fd.

IOLoop.remove_handler(fd)
Stop listening for events on fd.

Callbacks and timeouts

IOLoop.add_callback(callback, *args, **kwargs)
Calls the given callback on the next I/O loop iteration.

It is safe to call this method from any thread at any time, except from a signal handler. Note that this is the
only method in IOLoop that makes this thread-safety guarantee; all other interaction with the IOLoop must
be done from that IOLoop‘s thread. add_callback() may be used to transfer control from other threads to
the IOLoop‘s thread.

To add a callback from a signal handler, see add_callback_from_signal.

IOLoop.add_callback_from_signal(callback, *args, **kwargs)
Calls the given callback on the next I/O loop iteration.

Safe for use from a Python signal handler; should not be used otherwise.

Callbacks added with this method will be run without any stack_context, to avoid picking up the context
of the function that was interrupted by the signal.

IOLoop.add_future(future, callback)
Schedules a callback on the IOLoop when the given Future is finished.

The callback is invoked with one argument, the Future.

IOLoop.add_timeout(deadline, callback)
Runs the callback at the time deadline from the I/O loop.

Returns an opaque handle that may be passed to remove_timeout to cancel.

deadline may be a number denoting a time (on the same scale as IOLoop.time, normally time.time),
or a datetime.timedelta object for a deadline relative to the current time.

Note that it is not safe to call add_timeout from other threads. Instead, you must use add_callback to
transfer control to the IOLoop‘s thread, and then call add_timeout from there.

3.2. tornado.ioloop — Main event loop 51

http://python.readthedocs.io/en/latest/library/time.html#time.time
http://python.readthedocs.io/en/latest/library/datetime.html#datetime.timedelta

Tornado Documentation, Release 3.1

IOLoop.remove_timeout(timeout)
Cancels a pending timeout.

The argument is a handle as returned by add_timeout. It is safe to call remove_timeout even if the
callback has already been run.

IOLoop.time()
Returns the current time according to the IOLoop‘s clock.

The return value is a floating-point number relative to an unspecified time in the past.

By default, the IOLoop‘s time function is time.time. However, it may be configured to use e.g. time.
monotonic instead. Calls to add_timeout that pass a number instead of a datetime.timedelta
should use this function to compute the appropriate time, so they can work no matter what time function is
chosen.

class tornado.ioloop.PeriodicCallback(callback, callback_time, io_loop=None)
Schedules the given callback to be called periodically.

The callback is called every callback_time milliseconds.

start must be called after the PeriodicCallback is created.

start()
Starts the timer.

stop()
Stops the timer.

Debugging and error handling

IOLoop.handle_callback_exception(callback)
This method is called whenever a callback run by the IOLoop throws an exception.

By default simply logs the exception as an error. Subclasses may override this method to customize reporting
of exceptions.

The exception itself is not passed explicitly, but is available in sys.exc_info.

IOLoop.set_blocking_signal_threshold(seconds, action)
Sends a signal if the IOLoop is blocked for more than s seconds.

Pass seconds=None to disable. Requires Python 2.6 on a unixy platform.

The action parameter is a Python signal handler. Read the documentation for the signal module for more
information. If action is None, the process will be killed if it is blocked for too long.

IOLoop.set_blocking_log_threshold(seconds)
Logs a stack trace if the IOLoop is blocked for more than s seconds.

Equivalent to set_blocking_signal_threshold(seconds, self.log_stack)

IOLoop.log_stack(signal, frame)
Signal handler to log the stack trace of the current thread.

For use with set_blocking_signal_threshold.

52 Chapter 3. Asynchronous networking

http://python.readthedocs.io/en/latest/library/time.html#time.time
http://python.readthedocs.io/en/latest/library/time.html#time.monotonic
http://python.readthedocs.io/en/latest/library/time.html#time.monotonic
http://python.readthedocs.io/en/latest/library/datetime.html#datetime.timedelta
http://python.readthedocs.io/en/latest/library/sys.html#sys.exc_info
http://python.readthedocs.io/en/latest/library/signal.html#module-signal

Tornado Documentation, Release 3.1

tornado.iostream — Convenient wrappers for non-blocking sock-
ets

Utility classes to write to and read from non-blocking files and sockets.

Contents:

• BaseIOStream: Generic interface for reading and writing.

• IOStream: Implementation of BaseIOStream using non-blocking sockets.

• SSLIOStream: SSL-aware version of IOStream.

• PipeIOStream: Pipe-based IOStream implementation.

Base class

class tornado.iostream.BaseIOStream(io_loop=None, max_buffer_size=None,
read_chunk_size=4096)

A utility class to write to and read from a non-blocking file or socket.

We support a non-blocking write() and a family of read_*() methods. All of the methods take callbacks
(since writing and reading are non-blocking and asynchronous).

When a stream is closed due to an error, the IOStream’s error attribute contains the exception object.

Subclasses must implement fileno, close_fd, write_to_fd, read_from_fd, and optionally
get_fd_error.

Main interface

BaseIOStream.write(data, callback=None)
Write the given data to this stream.

If callback is given, we call it when all of the buffered write data has been successfully written to the stream.
If there was previously buffered write data and an old write callback, that callback is simply overwritten with
this new callback.

BaseIOStream.read_bytes(num_bytes, callback, streaming_callback=None)
Run callback when we read the given number of bytes.

If a streaming_callback is given, it will be called with chunks of data as they become available, and the
argument to the final callback will be empty. Otherwise, the callback gets the data as an argument.

BaseIOStream.read_until(delimiter, callback)
Run callback when we read the given delimiter.

The callback will get the data read (including the delimiter) as an argument.

BaseIOStream.read_until_regex(regex, callback)
Run callback when we read the given regex pattern.

The callback will get the data read (including the data that matched the regex and anything that came before it)
as an argument.

BaseIOStream.read_until_close(callback, streaming_callback=None)
Reads all data from the socket until it is closed.

If a streaming_callback is given, it will be called with chunks of data as they become available, and the
argument to the final callback will be empty. Otherwise, the callback gets the data as an argument.

3.3. tornado.iostream — Convenient wrappers for non-blocking sockets 53

Tornado Documentation, Release 3.1

Subject to max_buffer_size limit from IOStream constructor if a streaming_callback is not used.

BaseIOStream.close(exc_info=False)
Close this stream.

If exc_info is true, set the error attribute to the current exception from sys.exc_info (or if exc_info
is a tuple, use that instead of sys.exc_info).

BaseIOStream.set_close_callback(callback)
Call the given callback when the stream is closed.

BaseIOStream.closed()
Returns true if the stream has been closed.

BaseIOStream.reading()
Returns true if we are currently reading from the stream.

BaseIOStream.writing()
Returns true if we are currently writing to the stream.

BaseIOStream.set_nodelay(value)
Sets the no-delay flag for this stream.

By default, data written to TCP streams may be held for a time to make the most efficient use of bandwidth
(according to Nagle’s algorithm). The no-delay flag requests that data be written as soon as possible, even if
doing so would consume additional bandwidth.

This flag is currently defined only for TCP-based IOStreams.

New in version 3.1.

Methods for subclasses

BaseIOStream.fileno()
Returns the file descriptor for this stream.

BaseIOStream.close_fd()
Closes the file underlying this stream.

close_fd is called by BaseIOStream and should not be called elsewhere; other users should call close
instead.

BaseIOStream.write_to_fd(data)
Attempts to write data to the underlying file.

Returns the number of bytes written.

BaseIOStream.read_from_fd()
Attempts to read from the underlying file.

Returns None if there was nothing to read (the socket returned EWOULDBLOCK or equivalent), otherwise returns
the data. When possible, should return no more than self.read_chunk_size bytes at a time.

BaseIOStream.get_fd_error()
Returns information about any error on the underlying file.

This method is called after the IOLoop has signaled an error on the file descriptor, and should return an Excep-
tion (such as socket.error with additional information, or None if no such information is available.

54 Chapter 3. Asynchronous networking

http://python.readthedocs.io/en/latest/library/sys.html#sys.exc_info
http://python.readthedocs.io/en/latest/library/sys.html#sys.exc_info
http://python.readthedocs.io/en/latest/library/errno.html#errno.EWOULDBLOCK
http://python.readthedocs.io/en/latest/library/socket.html#socket.error

Tornado Documentation, Release 3.1

Implementations

class tornado.iostream.IOStream(socket, *args, **kwargs)
Socket-based IOStream implementation.

This class supports the read and write methods from BaseIOStream plus a connect method.

The socket parameter may either be connected or unconnected. For server operations the socket is the result
of calling socket.accept. For client operations the socket is created with socket.socket, and may
either be connected before passing it to the IOStream or connected with IOStream.connect.

A very simple (and broken) HTTP client using this class:

import tornado.ioloop
import tornado.iostream
import socket

def send_request():
stream.write(b"GET / HTTP/1.0\r\nHost: friendfeed.com\r\n\r\n")
stream.read_until(b"\r\n\r\n", on_headers)

def on_headers(data):
headers = {}
for line in data.split(b"\r\n"):

parts = line.split(b":")
if len(parts) == 2:

headers[parts[0].strip()] = parts[1].strip()
stream.read_bytes(int(headers[b"Content-Length"]), on_body)

def on_body(data):
print data
stream.close()
tornado.ioloop.IOLoop.instance().stop()

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0)
stream = tornado.iostream.IOStream(s)
stream.connect(("friendfeed.com", 80), send_request)
tornado.ioloop.IOLoop.instance().start()

connect(address, callback=None, server_hostname=None)
Connects the socket to a remote address without blocking.

May only be called if the socket passed to the constructor was not previously connected. The address
parameter is in the same format as for socket.connect, i.e. a (host, port) tuple. If callback
is specified, it will be called when the connection is completed.

If specified, the server_hostname parameter will be used in SSL connections for certificate validation
(if requested in the ssl_options) and SNI (if supported; requires Python 3.2+).

Note that it is safe to call IOStream.write while the connection is pending, in which case the data
will be written as soon as the connection is ready. Calling IOStream read methods before the socket is
connected works on some platforms but is non-portable.

class tornado.iostream.SSLIOStream(*args, **kwargs)
A utility class to write to and read from a non-blocking SSL socket.

If the socket passed to the constructor is already connected, it should be wrapped with:

ssl.wrap_socket(sock, do_handshake_on_connect=False, **kwargs)

3.3. tornado.iostream — Convenient wrappers for non-blocking sockets 55

http://python.readthedocs.io/en/latest/library/socket.html#socket.socket.accept
http://python.readthedocs.io/en/latest/library/socket.html#socket.socket
http://python.readthedocs.io/en/latest/library/socket.html#socket.socket.connect

Tornado Documentation, Release 3.1

before constructing the SSLIOStream. Unconnected sockets will be wrapped when IOStream.connect
is finished.

The ssl_options keyword argument may either be a dictionary of keywords arguments for ssl.
wrap_socket, or an ssl.SSLContext object.

class tornado.iostream.PipeIOStream(fd, *args, **kwargs)
Pipe-based IOStream implementation.

The constructor takes an integer file descriptor (such as one returned by os.pipe) rather than an open file
object. Pipes are generally one-way, so a PipeIOStream can be used for reading or writing but not both.

Exceptions

exception tornado.iostream.StreamClosedError
Exception raised by IOStream methods when the stream is closed.

Note that the close callback is scheduled to run after other callbacks on the stream (to allow for buffered data to
be processed), so you may see this error before you see the close callback.

tornado.httpclient — Asynchronous HTTP client

Blocking and non-blocking HTTP client interfaces.

This module defines a common interface shared by two implementations, simple_httpclient and
curl_httpclient. Applications may either instantiate their chosen implementation class directly or use the
AsyncHTTPClient class from this module, which selects an implementation that can be overridden with the
AsyncHTTPClient.configure method.

The default implementation is simple_httpclient, and this is expected to be suitable for most users’ needs.
However, some applications may wish to switch to curl_httpclient for reasons such as the following:

• curl_httpclient has some features not found in simple_httpclient, including support for HTTP
proxies and the ability to use a specified network interface.

• curl_httpclient is more likely to be compatible with sites that are not-quite-compliant with the HTTP
spec, or sites that use little-exercised features of HTTP.

• curl_httpclient is faster.

• curl_httpclient was the default prior to Tornado 2.0.

Note that if you are using curl_httpclient, it is highly recommended that you use a recent version of libcurl
and pycurl. Currently the minimum supported version is 7.18.2, and the recommended version is 7.21.1 or newer.

HTTP client interfaces

class tornado.httpclient.HTTPClient(async_client_class=None, **kwargs)
A blocking HTTP client.

This interface is provided for convenience and testing; most applications that are running an IOLoop will want
to use AsyncHTTPClient instead. Typical usage looks like this:

http_client = httpclient.HTTPClient()
try:

response = http_client.fetch("http://www.google.com/")
print response.body

56 Chapter 3. Asynchronous networking

http://python.readthedocs.io/en/latest/library/ssl.html#ssl.wrap_socket
http://python.readthedocs.io/en/latest/library/ssl.html#ssl.wrap_socket
http://python.readthedocs.io/en/latest/library/ssl.html#ssl.SSLContext
http://python.readthedocs.io/en/latest/library/os.html#os.pipe

Tornado Documentation, Release 3.1

except httpclient.HTTPError as e:
print "Error:", e

http_client.close()

close()
Closes the HTTPClient, freeing any resources used.

fetch(request, **kwargs)
Executes a request, returning an HTTPResponse.

The request may be either a string URL or an HTTPRequest object. If it is a string, we construct an
HTTPRequest using any additional kwargs: HTTPRequest(request, **kwargs)

If an error occurs during the fetch, we raise an HTTPError.

class tornado.httpclient.AsyncHTTPClient
An non-blocking HTTP client.

Example usage:

def handle_request(response):
if response.error:

print "Error:", response.error
else:

print response.body

http_client = AsyncHTTPClient()
http_client.fetch("http://www.google.com/", handle_request)

The constructor for this class is magic in several respects: It actually creates an instance of an implementation-
specific subclass, and instances are reused as a kind of pseudo-singleton (one per IOLoop). The keyword
argument force_instance=True can be used to suppress this singleton behavior. Constructor arguments
other than io_loop and force_instance are deprecated. The implementation subclass as well as argu-
ments to its constructor can be set with the static method configure()

close()
Destroys this HTTP client, freeing any file descriptors used. Not needed in normal use, but may
be helpful in unittests that create and destroy http clients. No other methods may be called on the
AsyncHTTPClient after close().

fetch(request, callback=None, **kwargs)
Executes a request, asynchronously returning an HTTPResponse.

The request may be either a string URL or an HTTPRequest object. If it is a string, we construct an
HTTPRequest using any additional kwargs: HTTPRequest(request, **kwargs)

This method returns a Future whose result is an HTTPResponse. The Future wil raise an
HTTPError if the request returned a non-200 response code.

If a callback is given, it will be invoked with the HTTPResponse. In the callback interface,
HTTPError is not automatically raised. Instead, you must check the response’s error attribute or
call its rethrow method.

classmethod configure(impl, **kwargs)
Configures the AsyncHTTPClient subclass to use.

AsyncHTTPClient() actually creates an instance of a subclass. This method may be called
with either a class object or the fully-qualified name of such a class (or None to use the default,
SimpleAsyncHTTPClient)

3.4. tornado.httpclient — Asynchronous HTTP client 57

Tornado Documentation, Release 3.1

If additional keyword arguments are given, they will be passed to the constructor of each subclass in-
stance created. The keyword argument max_clients determines the maximum number of simultane-
ous fetch() operations that can execute in parallel on each IOLoop. Additional arguments may be
supported depending on the implementation class in use.

Example:

AsyncHTTPClient.configure("tornado.curl_httpclient.CurlAsyncHTTPClient")

Request objects

class tornado.httpclient.HTTPRequest(url, method=’GET’, headers=None, body=None,
auth_username=None, auth_password=None,
auth_mode=None, connect_timeout=None, re-
quest_timeout=None, if_modified_since=None,
follow_redirects=None, max_redirects=None,
user_agent=None, use_gzip=None, net-
work_interface=None, streaming_callback=None,
header_callback=None, prepare_curl_callback=None,
proxy_host=None, proxy_port=None,
proxy_username=None, proxy_password=None, al-
low_nonstandard_methods=None, validate_cert=None,
ca_certs=None, allow_ipv6=None, client_key=None,
client_cert=None)

HTTP client request object.

All parameters except url are optional.

Parameters

• url (string) – URL to fetch

• method (string) – HTTP method, e.g. “GET” or “POST”

• headers (HTTPHeaders or dict) – Additional HTTP headers to pass on the request

• body – HTTP body to pass on the request

• auth_username (string) – Username for HTTP authentication

• auth_password (string) – Password for HTTP authentication

• auth_mode (string) – Authentication mode; default is “basic”. Allowed val-
ues are implementation-defined; curl_httpclient supports “basic” and “digest”;
simple_httpclient only supports “basic”

• connect_timeout (float) – Timeout for initial connection in seconds

• request_timeout (float) – Timeout for entire request in seconds

• if_modified_since (datetime or float) – Timestamp for
If-Modified-Since header

• follow_redirects (bool) – Should redirects be followed automatically or return the
3xx response?

• max_redirects (int) – Limit for follow_redirects

• user_agent (string) – String to send as User-Agent header

• use_gzip (bool) – Request gzip encoding from the server

58 Chapter 3. Asynchronous networking

http://python.readthedocs.io/en/latest/library/string.html#module-string
http://python.readthedocs.io/en/latest/library/string.html#module-string
http://python.readthedocs.io/en/latest/library/stdtypes.html#dict
http://python.readthedocs.io/en/latest/library/string.html#module-string
http://python.readthedocs.io/en/latest/library/string.html#module-string
http://python.readthedocs.io/en/latest/library/string.html#module-string
http://python.readthedocs.io/en/latest/library/functions.html#float
http://python.readthedocs.io/en/latest/library/functions.html#float
http://python.readthedocs.io/en/latest/library/datetime.html#module-datetime
http://python.readthedocs.io/en/latest/library/functions.html#float
http://python.readthedocs.io/en/latest/library/functions.html#bool
http://python.readthedocs.io/en/latest/library/functions.html#int
http://python.readthedocs.io/en/latest/library/string.html#module-string
http://python.readthedocs.io/en/latest/library/functions.html#bool

Tornado Documentation, Release 3.1

• network_interface (string) – Network interface to use for request

• streaming_callback (callable) – If set, streaming_callback will be
run with each chunk of data as it is received, and HTTPResponse.body and
HTTPResponse.buffer will be empty in the final response.

• header_callback (callable) – If set, header_callback will be run with each
header line as it is received (including the first line, e.g. HTTP/1.0 200 OK\r\n,
and a final line containing only \r\n. All lines include the trailing newline characters).
HTTPResponse.headerswill be empty in the final response. This is most useful in con-
junction with streaming_callback, because it’s the only way to get access to header
data while the request is in progress.

• prepare_curl_callback (callable) – If set, will be called with a pycurl.Curl
object to allow the application to make additional setopt calls.

• proxy_host (string) – HTTP proxy hostname. To use proxies, proxy_host and
proxy_port must be set; proxy_username and proxy_pass are optional. Proxies
are currently only supported with curl_httpclient.

• proxy_port (int) – HTTP proxy port

• proxy_username (string) – HTTP proxy username

• proxy_password (string) – HTTP proxy password

• allow_nonstandard_methods (bool) – Allow unknown values for method argu-
ment?

• validate_cert (bool) – For HTTPS requests, validate the server’s certificate?

• ca_certs (string) – filename of CA certificates in PEM format, or None to use de-
faults. Note that in curl_httpclient, if any request uses a custom ca_certs file,
they all must (they don’t have to all use the same ca_certs, but it’s not possible to mix
requests with ca_certs and requests that use the defaults.

• allow_ipv6 (bool) – Use IPv6 when available? Default is false in
simple_httpclient and true in curl_httpclient

• client_key (string) – Filename for client SSL key, if any

• client_cert (string) – Filename for client SSL certificate, if any

New in version 3.1: The auth_mode argument.

Response objects

class tornado.httpclient.HTTPResponse(request, code, headers=None, buffer=None, effec-
tive_url=None, error=None, request_time=None,
time_info=None, reason=None)

HTTP Response object.

Attributes:

•request: HTTPRequest object

•code: numeric HTTP status code, e.g. 200 or 404

•reason: human-readable reason phrase describing the status code (with curl_httpclient, this is a default
value rather than the server’s actual response)

•headers: tornado.httputil.HTTPHeaders object

3.4. tornado.httpclient — Asynchronous HTTP client 59

http://python.readthedocs.io/en/latest/library/string.html#module-string
http://python.readthedocs.io/en/latest/library/functions.html#callable
http://python.readthedocs.io/en/latest/library/functions.html#callable
http://python.readthedocs.io/en/latest/library/functions.html#callable
http://python.readthedocs.io/en/latest/library/string.html#module-string
http://python.readthedocs.io/en/latest/library/functions.html#int
http://python.readthedocs.io/en/latest/library/string.html#module-string
http://python.readthedocs.io/en/latest/library/string.html#module-string
http://python.readthedocs.io/en/latest/library/functions.html#bool
http://python.readthedocs.io/en/latest/library/functions.html#bool
http://python.readthedocs.io/en/latest/library/string.html#module-string
http://python.readthedocs.io/en/latest/library/functions.html#bool
http://python.readthedocs.io/en/latest/library/string.html#module-string
http://python.readthedocs.io/en/latest/library/string.html#module-string

Tornado Documentation, Release 3.1

•buffer: cStringIO object for response body

•body: response body as string (created on demand from self.buffer)

•error: Exception object, if any

•request_time: seconds from request start to finish

•time_info: dictionary of diagnostic timing information from the request. Available data are subject
to change, but currently uses timings available from http://curl.haxx.se/libcurl/c/curl_easy_getinfo.html,
plus queue, which is the delay (if any) introduced by waiting for a slot under AsyncHTTPClient‘s
max_clients setting.

rethrow()
If there was an error on the request, raise an HTTPError.

Exceptions

exception tornado.httpclient.HTTPError(code, message=None, response=None)
Exception thrown for an unsuccessful HTTP request.

Attributes:

•code - HTTP error integer error code, e.g. 404. Error code 599 is used when no HTTP response was
received, e.g. for a timeout.

•response - HTTPResponse object, if any.

Note that if follow_redirects is False, redirects become HTTPErrors, and you can look at error.
response.headers['Location'] to see the destination of the redirect.

Command-line interface

This module provides a simple command-line interface to fetch a url using Tornado’s HTTP client. Example usage:

Fetch the url and print its body
python -m tornado.httpclient http://www.google.com

Just print the headers
python -m tornado.httpclient --print_headers --print_body=false http://www.google.com

tornado.netutil — Miscellaneous network utilities

Miscellaneous network utility code.

tornado.netutil.bind_sockets(port, address=None, family=0, backlog=128, flags=None)
Creates listening sockets bound to the given port and address.

Returns a list of socket objects (multiple sockets are returned if the given address maps to multiple IP addresses,
which is most common for mixed IPv4 and IPv6 use).

Address may be either an IP address or hostname. If it’s a hostname, the server will listen on all IP addresses
associated with the name. Address may be an empty string or None to listen on all available interfaces. Fam-
ily may be set to either socket.AF_INET or socket.AF_INET6 to restrict to IPv4 or IPv6 addresses,
otherwise both will be used if available.

The backlog argument has the same meaning as for socket.listen().

60 Chapter 3. Asynchronous networking

http://curl.haxx.se/libcurl/c/curl_easy_getinfo.html
http://python.readthedocs.io/en/latest/library/socket.html#socket.AF_INET
http://python.readthedocs.io/en/latest/library/socket.html#socket.AF_INET6
http://python.readthedocs.io/en/latest/library/socket.html#socket.socket.listen

Tornado Documentation, Release 3.1

flags is a bitmask of AI_* flags to getaddrinfo, like socket.AI_PASSIVE | socket.
AI_NUMERICHOST.

tornado.netutil.bind_unix_socket(file, mode=384, backlog=128)
Creates a listening unix socket.

If a socket with the given name already exists, it will be deleted. If any other file with that name exists, an
exception will be raised.

Returns a socket object (not a list of socket objects like bind_sockets)

tornado.netutil.add_accept_handler(sock, callback, io_loop=None)
Adds an IOLoop event handler to accept new connections on sock.

When a connection is accepted, callback(connection, address) will be run (connection is a
socket object, and address is the address of the other end of the connection). Note that this signature is
different from the callback(fd, events) signature used for IOLoop handlers.

tornado.netutil.is_valid_ip(ip)
Returns true if the given string is a well-formed IP address.

Supports IPv4 and IPv6.

class tornado.netutil.Resolver
Configurable asynchronous DNS resolver interface.

By default, a blocking implementation is used (which simply calls socket.getaddrinfo). An alternative
implementation can be chosen with the Resolver.configure class method:

Resolver.configure('tornado.netutil.ThreadedResolver')

The implementations of this interface included with Tornado are

•tornado.netutil.BlockingResolver

•tornado.netutil.ThreadedResolver

•tornado.netutil.OverrideResolver

•tornado.platform.twisted.TwistedResolver

•tornado.platform.caresresolver.CaresResolver

resolve(host, port, family=0, callback=None)
Resolves an address.

The host argument is a string which may be a hostname or a literal IP address.

Returns a Future whose result is a list of (family, address) pairs, where address is a tuple suitable to pass
to socket.connect (i.e. a (host, port) pair for IPv4; additional fields may be present for IPv6).
If a callback is passed, it will be run with the result as an argument when it is complete.

close()
Closes the Resolver, freeing any resources used.

New in version 3.1.

class tornado.netutil.ExecutorResolver
Resolver implementation using a concurrent.futures.Executor.

Use this instead of ThreadedResolver when you require additional control over the executor being used.

The executor will be shut down when the resolver is closed unless close_resolver=False; use this if you
want to reuse the same executor elsewhere.

3.5. tornado.netutil — Miscellaneous network utilities 61

http://python.readthedocs.io/en/latest/library/socket.html#socket.getaddrinfo
http://python.readthedocs.io/en/latest/library/socket.html#socket.getaddrinfo
http://python.readthedocs.io/en/latest/library/socket.html#socket.socket.connect
http://python.readthedocs.io/en/latest/library/concurrent.futures.html#concurrent.futures.Executor

Tornado Documentation, Release 3.1

class tornado.netutil.BlockingResolver
Default Resolver implementation, using socket.getaddrinfo.

The IOLoop will be blocked during the resolution, although the callback will not be run until the next IOLoop
iteration.

class tornado.netutil.ThreadedResolver
Multithreaded non-blocking Resolver implementation.

Requires the concurrent.futures package to be installed (available in the standard library since Python
3.2, installable with pip install futures in older versions).

The thread pool size can be configured with:

Resolver.configure('tornado.netutil.ThreadedResolver',
num_threads=10)

Changed in version 3.1: All ThreadedResolvers share a single thread pool, whose size is set by the first
one to be created.

class tornado.netutil.OverrideResolver
Wraps a resolver with a mapping of overrides.

This can be used to make local DNS changes (e.g. for testing) without modifying system-wide settings.

The mapping can contain either host strings or host-port pairs.

tornado.netutil.ssl_options_to_context(ssl_options)
Try to convert an ssl_options dictionary to an SSLContext object.

The ssl_options dictionary contains keywords to be passed to ssl.wrap_socket. In Python 3.2+,
ssl.SSLContext objects can be used instead. This function converts the dict form to its SSLContext
equivalent, and may be used when a component which accepts both forms needs to upgrade to the SSLContext
version to use features like SNI or NPN.

tornado.netutil.ssl_wrap_socket(socket, ssl_options, server_hostname=None, **kwargs)
Returns an ssl.SSLSocket wrapping the given socket.

ssl_options may be either a dictionary (as accepted by ssl_options_to_context) or an ssl.
SSLContext object. Additional keyword arguments are passed to wrap_socket (either the SSLContext
method or the ssl module function as appropriate).

tornado.tcpserver — Basic IOStream-based TCP server

A non-blocking, single-threaded TCP server.

class tornado.tcpserver.TCPServer(io_loop=None, ssl_options=None, max_buffer_size=None)
A non-blocking, single-threaded TCP server.

To use TCPServer, define a subclass which overrides the handle_stream method.

To make this server serve SSL traffic, send the ssl_options dictionary argument with the arguments required for
the ssl.wrap_socket method, including “certfile” and “keyfile”:

TCPServer(ssl_options={
"certfile": os.path.join(data_dir, "mydomain.crt"),
"keyfile": os.path.join(data_dir, "mydomain.key"),

})

TCPServer initialization follows one of three patterns:

62 Chapter 3. Asynchronous networking

http://python.readthedocs.io/en/latest/library/socket.html#socket.getaddrinfo
http://python.readthedocs.io/en/latest/library/concurrent.futures.html#module-concurrent.futures
http://python.readthedocs.io/en/latest/library/ssl.html#ssl.SSLContext
http://python.readthedocs.io/en/latest/library/ssl.html#ssl.wrap_socket
http://python.readthedocs.io/en/latest/library/ssl.html#ssl.SSLContext
http://python.readthedocs.io/en/latest/library/ssl.html#ssl.SSLContext
http://python.readthedocs.io/en/latest/library/ssl.html#ssl.SSLContext
http://python.readthedocs.io/en/latest/library/ssl.html#ssl.SSLContext
http://python.readthedocs.io/en/latest/library/ssl.html#ssl.SSLContext
http://python.readthedocs.io/en/latest/library/ssl.html#ssl.SSLContext
http://python.readthedocs.io/en/latest/library/ssl.html#module-ssl
http://python.readthedocs.io/en/latest/library/ssl.html#ssl.wrap_socket

Tornado Documentation, Release 3.1

1.listen: simple single-process:

server = TCPServer()
server.listen(8888)
IOLoop.instance().start()

2.bind/start: simple multi-process:

server = TCPServer()
server.bind(8888)
server.start(0) # Forks multiple sub-processes
IOLoop.instance().start()

When using this interface, an IOLoop must not be passed to the TCPServer constructor. start will
always start the server on the default singleton IOLoop.

3.add_sockets: advanced multi-process:

sockets = bind_sockets(8888)
tornado.process.fork_processes(0)
server = TCPServer()
server.add_sockets(sockets)
IOLoop.instance().start()

The add_sockets interface is more complicated, but it can be used with tornado.process.
fork_processes to give you more flexibility in when the fork happens. add_sockets can also
be used in single-process servers if you want to create your listening sockets in some way other than
bind_sockets.

New in version 3.1: The max_buffer_size argument.

listen(port, address=’‘)
Starts accepting connections on the given port.

This method may be called more than once to listen on multiple ports. listen takes effect immediately;
it is not necessary to call TCPServer.start afterwards. It is, however, necessary to start the IOLoop.

add_sockets(sockets)
Makes this server start accepting connections on the given sockets.

The sockets parameter is a list of socket objects such as those returned by bind_sockets.
add_sockets is typically used in combination with that method and tornado.process.
fork_processes to provide greater control over the initialization of a multi-process server.

add_socket(socket)
Singular version of add_sockets. Takes a single socket object.

bind(port, address=None, family=0, backlog=128)
Binds this server to the given port on the given address.

To start the server, call start. If you want to run this server in a single process, you can call listen as
a shortcut to the sequence of bind and start calls.

Address may be either an IP address or hostname. If it’s a hostname, the server will listen on all IP
addresses associated with the name. Address may be an empty string or None to listen on all available
interfaces. Family may be set to either socket.AF_INET or socket.AF_INET6 to restrict to IPv4
or IPv6 addresses, otherwise both will be used if available.

The backlog argument has the same meaning as for socket.listen.

This method may be called multiple times prior to start to listen on multiple ports or interfaces.

3.6. tornado.tcpserver — Basic IOStream-based TCP server 63

http://python.readthedocs.io/en/latest/library/socket.html#socket.AF_INET
http://python.readthedocs.io/en/latest/library/socket.html#socket.AF_INET6
http://python.readthedocs.io/en/latest/library/socket.html#socket.socket.listen

Tornado Documentation, Release 3.1

start(num_processes=1)
Starts this server in the IOLoop.

By default, we run the server in this process and do not fork any additional child process.

If num_processes is None or <= 0, we detect the number of cores available on this machine and fork
that number of child processes. If num_processes is given and > 1, we fork that specific number of sub-
processes.

Since we use processes and not threads, there is no shared memory between any server code.

Note that multiple processes are not compatible with the autoreload module (or the debug=True option
to tornado.web.Application). When using multiple processes, no IOLoops can be created or
referenced until after the call to TCPServer.start(n).

stop()
Stops listening for new connections.

Requests currently in progress may still continue after the server is stopped.

handle_stream(stream, address)
Override to handle a new IOStream from an incoming connection.

64 Chapter 3. Asynchronous networking

CHAPTER 4

Integration with other services

tornado.auth — Third-party login with OpenID and OAuth

This module contains implementations of various third-party authentication schemes.

All the classes in this file are class mixins designed to be used with the tornado.web.RequestHandler class.
They are used in two ways:

• On a login handler, use methods such as authenticate_redirect(), authorize_redirect(),
and get_authenticated_user() to establish the user’s identity and store authentication tokens to your
database and/or cookies.

• In non-login handlers, use methods such as facebook_request() or twitter_request() to use the
authentication tokens to make requests to the respective services.

They all take slightly different arguments due to the fact all these services implement authentication and authorization
slightly differently. See the individual service classes below for complete documentation.

Example usage for Google OpenID:

class GoogleLoginHandler(tornado.web.RequestHandler,
tornado.auth.GoogleMixin):

@tornado.web.asynchronous
@tornado.gen.coroutine
def get(self):

if self.get_argument("openid.mode", None):
user = yield self.get_authenticated_user()
Save the user with e.g. set_secure_cookie()

else:
yield self.authenticate_redirect()

65

Tornado Documentation, Release 3.1

Common protocols

These classes implement the OpenID and OAuth standards. They will generally need to be subclassed to use them with
any particular site. The degree of customization required will vary, but in most cases overridding the class attributes
(which are named beginning with underscores for historical reasons) should be sufficient.

class tornado.auth.OpenIdMixin
Abstract implementation of OpenID and Attribute Exchange.

See GoogleMixin below for a customized example (which also includes OAuth support).

Class attributes:

•_OPENID_ENDPOINT: the identity provider’s URI.

authenticate_redirect(*args, **kwargs)
Redirects to the authentication URL for this service.

After authentication, the service will redirect back to the given callback URI with additional parameters
including openid.mode.

We request the given attributes for the authenticated user by default (name, email, language, and user-
name). If you don’t need all those attributes for your app, you can request fewer with the ax_attrs keyword
argument.

Changed in version 3.1: Returns a Future and takes an optional callback. These are not strictly
necessary as this method is synchronous, but they are supplied for consistency with OAuthMixin.
authorize_redirect.

get_authenticated_user(*args, **kwargs)
Fetches the authenticated user data upon redirect.

This method should be called by the handler that receives the redirect from the
authenticate_redirect() method (which is often the same as the one that calls it; in that
case you would call get_authenticated_user if the openid.mode parameter is present and
authenticate_redirect if it is not).

The result of this method will generally be used to set a cookie.

get_auth_http_client()
Returns the AsyncHTTPClient instance to be used for auth requests.

May be overridden by subclasses to use an HTTP client other than the default.

class tornado.auth.OAuthMixin
Abstract implementation of OAuth 1.0 and 1.0a.

See TwitterMixin and FriendFeedMixin below for example implementations, or GoogleMixin for
an OAuth/OpenID hybrid.

Class attributes:

•_OAUTH_AUTHORIZE_URL: The service’s OAuth authorization url.

•_OAUTH_ACCESS_TOKEN_URL: The service’s OAuth access token url.

•_OAUTH_VERSION: May be either “1.0” or “1.0a”.

•_OAUTH_NO_CALLBACKS: Set this to True if the service requires advance registration of callbacks.

Subclasses must also override the _oauth_get_user_future and _oauth_consumer_token meth-
ods.

66 Chapter 4. Integration with other services

Tornado Documentation, Release 3.1

authorize_redirect(*args, **kwargs)
Redirects the user to obtain OAuth authorization for this service.

The callback_uri may be omitted if you have previously registered a callback URI with the third-
party service. For some sevices (including Friendfeed), you must use a previously-registered callback URI
and cannot specify a callback via this method.

This method sets a cookie called _oauth_request_token which is subsequently used (and cleared)
in get_authenticated_user for security purposes.

Note that this method is asynchronous, although it calls RequestHandler.finish for you so it may
not be necessary to pass a callback or use the Future it returns. However, if this method is called from a
function decorated with gen.coroutine, you must call it with yield to keep the response from being
closed prematurely.

Changed in version 3.1: Now returns a Future and takes an optional callback, for compatibility with
gen.coroutine.

get_authenticated_user(*args, **kwargs)
Gets the OAuth authorized user and access token.

This method should be called from the handler for your OAuth callback URL to complete the registration
process. We run the callback with the authenticated user dictionary. This dictionary will contain an
access_key which can be used to make authorized requests to this service on behalf of the user. The
dictionary will also contain other fields such as name, depending on the service used.

_oauth_consumer_token()
Subclasses must override this to return their OAuth consumer keys.

The return value should be a dict with keys key and secret.

_oauth_get_user_future(*args, **kwargs)
Subclasses must override this to get basic information about the user.

Should return a Future whose result is a dictionary containing information about the user, which may
have been retrieved by using access_token to make a request to the service.

The access token will be added to the returned dictionary to make the result of
get_authenticated_user.

For backwards compatibility, the callback-based _oauth_get_user method is also supported.

get_auth_http_client()
Returns the AsyncHTTPClient instance to be used for auth requests.

May be overridden by subclasses to use an HTTP client other than the default.

class tornado.auth.OAuth2Mixin
Abstract implementation of OAuth 2.0.

See FacebookGraphMixin below for an example implementation.

Class attributes:

•_OAUTH_AUTHORIZE_URL: The service’s authorization url.

•_OAUTH_ACCESS_TOKEN_URL: The service’s access token url.

authorize_redirect(*args, **kwargs)
Redirects the user to obtain OAuth authorization for this service.

Some providers require that you register a redirect URL with your application instead of passing one via
this method. You should call this method to log the user in, and then call get_authenticated_user
in the handler for your redirect URL to complete the authorization process.

4.1. tornado.auth — Third-party login with OpenID and OAuth 67

http://python.readthedocs.io/en/latest/library/stdtypes.html#dict

Tornado Documentation, Release 3.1

Changed in version 3.1: Returns a Future and takes an optional callback. These are not strictly
necessary as this method is synchronous, but they are supplied for consistency with OAuthMixin.
authorize_redirect.

Google

class tornado.auth.GoogleMixin
Google Open ID / OAuth authentication.

No application registration is necessary to use Google for authentication or to access Google resources on behalf
of a user.

Google implements both OpenID and OAuth in a hybrid mode. If you just need the user’s identity,
use authenticate_redirect. If you need to make requests to Google on behalf of the user, use
authorize_redirect. On return, parse the response with get_authenticated_user. We send a
dict containing the values for the user, including email, name, and locale.

Example usage:

class GoogleLoginHandler(tornado.web.RequestHandler,
tornado.auth.GoogleMixin):

@tornado.web.asynchronous
@tornado.gen.coroutine
def get(self):

if self.get_argument("openid.mode", None):
user = yield self.get_authenticated_user()
Save the user with e.g. set_secure_cookie()

else:
yield self.authenticate_redirect()

authorize_redirect(*args, **kwargs)
Authenticates and authorizes for the given Google resource.

Some of the available resources which can be used in the oauth_scope argument are:

•Gmail Contacts - http://www.google.com/m8/feeds/

•Calendar - http://www.google.com/calendar/feeds/

•Finance - http://finance.google.com/finance/feeds/

You can authorize multiple resources by separating the resource URLs with a space.

Changed in version 3.1: Returns a Future and takes an optional callback. These are not strictly
necessary as this method is synchronous, but they are supplied for consistency with OAuthMixin.
authorize_redirect.

get_authenticated_user(*args, **kwargs)
Fetches the authenticated user data upon redirect.

Facebook

class tornado.auth.FacebookGraphMixin
Facebook authentication using the new Graph API and OAuth2.

get_authenticated_user(*args, **kwargs)
Handles the login for the Facebook user, returning a user object.

Example usage:

68 Chapter 4. Integration with other services

http://www.google.com/m8/feeds/
http://www.google.com/calendar/feeds/
http://finance.google.com/finance/feeds/

Tornado Documentation, Release 3.1

class FacebookGraphLoginHandler(LoginHandler, tornado.auth.
→˓FacebookGraphMixin):
@tornado.web.asynchronous
@tornado.gen.coroutine
def get(self):

if self.get_argument("code", False):
user = yield self.get_authenticated_user(

redirect_uri='/auth/facebookgraph/',
client_id=self.settings["facebook_api_key"],
client_secret=self.settings["facebook_secret"],
code=self.get_argument("code"))

Save the user with e.g. set_secure_cookie
else:

yield self.authorize_redirect(
redirect_uri='/auth/facebookgraph/',
client_id=self.settings["facebook_api_key"],
extra_params={"scope": "read_stream,offline_access"})

facebook_request(*args, **kwargs)
Fetches the given relative API path, e.g., “/btaylor/picture”

If the request is a POST, post_args should be provided. Query string arguments should be given as
keyword arguments.

An introduction to the Facebook Graph API can be found at http://developers.facebook.com/docs/api

Many methods require an OAuth access token which you can obtain through authorize_redirect
and get_authenticated_user. The user returned through that process includes an
access_token attribute that can be used to make authenticated requests via this method.

Example usage:

class MainHandler(tornado.web.RequestHandler,
tornado.auth.FacebookGraphMixin):

@tornado.web.authenticated
@tornado.web.asynchronous
@tornado.gen.coroutine
def get(self):

new_entry = yield self.facebook_request(
"/me/feed",
post_args={"message": "I am posting from my Tornado application!"}

→˓,
access_token=self.current_user["access_token"])

if not new_entry:
Call failed; perhaps missing permission?
yield self.authorize_redirect()
return

self.finish("Posted a message!")

The given path is relative to self._FACEBOOK_BASE_URL, by default “https://graph.facebook.com”.

Changed in version 3.1: Added the ability to override self._FACEBOOK_BASE_URL.

get_auth_http_client()
Returns the AsyncHTTPClient instance to be used for auth requests.

May be overridden by subclasses to use an HTTP client other than the default.

4.1. tornado.auth — Third-party login with OpenID and OAuth 69

http://developers.facebook.com/docs/api
https://graph.facebook.com

Tornado Documentation, Release 3.1

class tornado.auth.FacebookMixin
Facebook Connect authentication.

Deprecated: New applications should use FacebookGraphMixin below instead of this class. This class
does not support the Future-based interface seen on other classes in this module.

To authenticate with Facebook, register your application with Facebook at http://www.facebook.com/
developers/apps.php. Then copy your API Key and Application Secret to the application settings
facebook_api_key and facebook_secret.

When your application is set up, you can use this mixin like this to authenticate the user with Facebook:

class FacebookHandler(tornado.web.RequestHandler,
tornado.auth.FacebookMixin):

@tornado.web.asynchronous
def get(self):

if self.get_argument("session", None):
self.get_authenticated_user(self.async_callback(self._on_auth))
return

yield self.authenticate_redirect()

def _on_auth(self, user):
if not user:

raise tornado.web.HTTPError(500, "Facebook auth failed")
Save the user using, e.g., set_secure_cookie()

The user object returned by get_authenticated_user includes the attributes facebook_uid and
name in addition to session attributes like session_key. You should save the session key with the user;
it is required to make requests on behalf of the user later with facebook_request.

authenticate_redirect(*args, **kwargs)
Authenticates/installs this app for the current user.

Changed in version 3.1: Returns a Future and takes an optional callback. These are not strictly
necessary as this method is synchronous, but they are supplied for consistency with OAuthMixin.
authorize_redirect.

authorize_redirect(extended_permissions, callback_uri=None, cancel_uri=None, call-
back=None)

Redirects to an authorization request for the given FB resource.

The available resource names are listed at http://wiki.developers.facebook.com/index.php/Extended_
permission. The most common resource types include:

•publish_stream

•read_stream

•email

•sms

extended_permissions can be a single permission name or a list of names. To get the session secret and
session key, call get_authenticated_user() just as you would with authenticate_redirect().

Changed in version 3.1: Returns a Future and takes an optional callback. These are not strictly
necessary as this method is synchronous, but they are supplied for consistency with OAuthMixin.
authorize_redirect.

get_authenticated_user(callback)
Fetches the authenticated Facebook user.

70 Chapter 4. Integration with other services

http://www.facebook.com/developers/apps.php
http://www.facebook.com/developers/apps.php
http://wiki.developers.facebook.com/index.php/Extended_permission
http://wiki.developers.facebook.com/index.php/Extended_permission

Tornado Documentation, Release 3.1

The authenticated user includes the special Facebook attributes ‘session_key’ and ‘facebook_uid’ in addi-
tion to the standard user attributes like ‘name’.

facebook_request(method, callback, **args)
Makes a Facebook API REST request.

We automatically include the Facebook API key and signature, but it is the callers responsibility to include
‘session_key’ and any other required arguments to the method.

The available Facebook methods are documented here: http://wiki.developers.facebook.com/index.php/
API

Here is an example for the stream.get() method:

class MainHandler(tornado.web.RequestHandler,
tornado.auth.FacebookMixin):

@tornado.web.authenticated
@tornado.web.asynchronous
def get(self):

self.facebook_request(
method="stream.get",
callback=self.async_callback(self._on_stream),
session_key=self.current_user["session_key"])

def _on_stream(self, stream):
if stream is None:

Not authorized to read the stream yet?
self.redirect(self.authorize_redirect("read_stream"))
return

self.render("stream.html", stream=stream)

get_auth_http_client()
Returns the AsyncHTTPClient instance to be used for auth requests.

May be overridden by subclasses to use an HTTP client other than the default.

Twitter

class tornado.auth.TwitterMixin
Twitter OAuth authentication.

To authenticate with Twitter, register your application with Twitter at http://twitter.com/apps. Then copy
your Consumer Key and Consumer Secret to the application settings twitter_consumer_key and
twitter_consumer_secret. Use this mixin on the handler for the URL you registered as your applica-
tion’s callback URL.

When your application is set up, you can use this mixin like this to authenticate the user with Twitter and get
access to their stream:

class TwitterLoginHandler(tornado.web.RequestHandler,
tornado.auth.TwitterMixin):

@tornado.web.asynchronous
@tornado.gen.coroutine
def get(self):

if self.get_argument("oauth_token", None):
user = yield self.get_authenticated_user()
Save the user using e.g. set_secure_cookie()

else:
yield self.authorize_redirect()

4.1. tornado.auth — Third-party login with OpenID and OAuth 71

http://wiki.developers.facebook.com/index.php/API
http://wiki.developers.facebook.com/index.php/API
http://twitter.com/apps

Tornado Documentation, Release 3.1

The user object returned by get_authenticated_user includes the attributes username, name,
access_token, and all of the custom Twitter user attributes described at https://dev.twitter.com/docs/api/
1.1/get/users/show

authenticate_redirect(*args, **kwargs)
Just like authorize_redirect, but auto-redirects if authorized.

This is generally the right interface to use if you are using Twitter for single-sign on.

Changed in version 3.1: Now returns a Future and takes an optional callback, for compatibility with
gen.coroutine.

twitter_request(*args, **kwargs)
Fetches the given API path, e.g., statuses/user_timeline/btaylor

The path should not include the format or API version number. (we automatically use JSON format and
API version 1).

If the request is a POST, post_args should be provided. Query string arguments should be given as
keyword arguments.

All the Twitter methods are documented at http://dev.twitter.com/

Many methods require an OAuth access token which you can obtain through authorize_redirect
and get_authenticated_user. The user returned through that process includes an ‘access_token’
attribute that can be used to make authenticated requests via this method. Example usage:

class MainHandler(tornado.web.RequestHandler,
tornado.auth.TwitterMixin):

@tornado.web.authenticated
@tornado.web.asynchronous
@tornado.gen.coroutine
def get(self):

new_entry = yield self.twitter_request(
"/statuses/update",
post_args={"status": "Testing Tornado Web Server"},
access_token=self.current_user["access_token"])

if not new_entry:
Call failed; perhaps missing permission?
yield self.authorize_redirect()
return

self.finish("Posted a message!")

FriendFeed

class tornado.auth.FriendFeedMixin
FriendFeed OAuth authentication.

To authenticate with FriendFeed, register your application with FriendFeed at http://friendfeed.com/api/
applications. Then copy your Consumer Key and Consumer Secret to the application settings
friendfeed_consumer_key and friendfeed_consumer_secret. Use this mixin on the handler
for the URL you registered as your application’s Callback URL.

When your application is set up, you can use this mixin like this to authenticate the user with FriendFeed and
get access to their feed:

class FriendFeedLoginHandler(tornado.web.RequestHandler,
tornado.auth.FriendFeedMixin):

@tornado.web.asynchronous

72 Chapter 4. Integration with other services

https://dev.twitter.com/docs/api/1.1/get/users/show
https://dev.twitter.com/docs/api/1.1/get/users/show
http://dev.twitter.com/
http://friendfeed.com/api/applications
http://friendfeed.com/api/applications

Tornado Documentation, Release 3.1

@tornado.gen.coroutine
def get(self):

if self.get_argument("oauth_token", None):
user = yield self.get_authenticated_user()
Save the user using e.g. set_secure_cookie()

else:
yield self.authorize_redirect()

The user object returned by get_authenticated_user() includes the attributes username, name, and
description in addition to access_token. You should save the access token with the user; it is required
to make requests on behalf of the user later with friendfeed_request().

friendfeed_request(*args, **kwargs)
Fetches the given relative API path, e.g., “/bret/friends”

If the request is a POST, post_args should be provided. Query string arguments should be given as
keyword arguments.

All the FriendFeed methods are documented at http://friendfeed.com/api/documentation.

Many methods require an OAuth access token which you can obtain through authorize_redirect
and get_authenticated_user. The user returned through that process includes an
access_token attribute that can be used to make authenticated requests via this method.

Example usage:

class MainHandler(tornado.web.RequestHandler,
tornado.auth.FriendFeedMixin):

@tornado.web.authenticated
@tornado.web.asynchronous
@tornado.gen.coroutine
def get(self):

new_entry = yield self.friendfeed_request(
"/entry",
post_args={"body": "Testing Tornado Web Server"},
access_token=self.current_user["access_token"])

if not new_entry:
Call failed; perhaps missing permission?
yield self.authorize_redirect()
return

self.finish("Posted a message!")

tornado.platform.caresresolver — Asynchronous DNS Re-
solver using C-Ares

This module contains a DNS resolver using the c-ares library (and its wrapper pycares).

class tornado.platform.caresresolver.CaresResolver
Name resolver based on the c-ares library.

This is a non-blocking and non-threaded resolver. It may not produce the same results as the system resolver,
but can be used for non-blocking resolution when threads cannot be used.

c-ares fails to resolve some names when family is AF_UNSPEC, so it is only recommended for use in
AF_INET (i.e. IPv4). This is the default for tornado.simple_httpclient, but other libraries may
default to AF_UNSPEC.

4.2. tornado.platform.caresresolver — Asynchronous DNS Resolver using C-Ares 73

http://friendfeed.com/api/documentation

Tornado Documentation, Release 3.1

tornado.platform.twisted — Bridges between Twisted and Tor-
nado

This module lets you run applications and libraries written for Twisted in a Tornado application. It can be used in two
modes, depending on which library’s underlying event loop you want to use.

This module has been tested with Twisted versions 11.0.0 and newer.

Twisted on Tornado

class tornado.platform.twisted.TornadoReactor
TornadoReactor implements the Twisted reactor interface on top of the Tornado IOLoop. To use it, simply
call install at the beginning of the application:

import tornado.platform.twisted
tornado.platform.twisted.install()
from twisted.internet import reactor

When the app is ready to start, call IOLoop.instance().start() instead of reactor.run().

It is also possible to create a non-global reactor by calling tornado.platform.twisted.
TornadoReactor(io_loop). However, if the IOLoop and reactor are to be short-lived (such as those
used in unit tests), additional cleanup may be required. Specifically, it is recommended to call:

reactor.fireSystemEvent('shutdown')
reactor.disconnectAll()

before closing the IOLoop.

Tornado on Twisted

class tornado.platform.twisted.TwistedIOLoop
TwistedIOLoop implements the Tornado IOLoop interface on top of the Twisted reactor. Recommended
usage:

from tornado.platform.twisted import TwistedIOLoop
from twisted.internet import reactor
TwistedIOLoop().install()
Set up your tornado application as usual using `IOLoop.instance`
reactor.run()

TwistedIOLoop always uses the global Twisted reactor.

Twisted DNS resolver

class tornado.platform.twisted.TwistedResolver
This is a non-blocking and non-threaded resolver. It is recommended only when threads cannot be used, since
it has limitations compared to the standard getaddrinfo-based Resolver and ThreadedResolver.
Specifically, it returns at most one result, and arguments other than host and family are ignored. It may fail
to resolve when family is not socket.AF_UNSPEC.

Requires Twisted 12.1 or newer.

74 Chapter 4. Integration with other services

Tornado Documentation, Release 3.1

tornado.websocket — Bidirectional communication to the browser

Implementation of the WebSocket protocol.

WebSockets allow for bidirectional communication between the browser and server.

Warning: The WebSocket protocol was recently finalized as RFC 6455 and is not yet supported in all browsers.
Refer to http://caniuse.com/websockets for details on compatibility. In addition, during development the protocol
went through several incompatible versions, and some browsers only support older versions. By default this
module only supports the latest version of the protocol, but optional support for an older version (known as “draft
76” or “hixie-76”) can be enabled by overriding WebSocketHandler.allow_draft76 (see that method’s
documentation for caveats).

class tornado.websocket.WebSocketHandler(application, request, **kwargs)
Subclass this class to create a basic WebSocket handler.

Override on_message to handle incoming messages, and use write_message to send messages to the
client. You can also override open and on_close to handle opened and closed connections.

See http://dev.w3.org/html5/websockets/ for details on the JavaScript interface. The protocol is specified at
http://tools.ietf.org/html/rfc6455.

Here is an example WebSocket handler that echos back all received messages back to the client:

class EchoWebSocket(websocket.WebSocketHandler):
def open(self):

print "WebSocket opened"

def on_message(self, message):
self.write_message(u"You said: " + message)

def on_close(self):
print "WebSocket closed"

WebSockets are not standard HTTP connections. The “handshake” is HTTP, but after the handshake, the pro-
tocol is message-based. Consequently, most of the Tornado HTTP facilities are not available in handlers of this
type. The only communication methods available to you are write_message(), ping(), and close().
Likewise, your request handler class should implement open() method rather than get() or post().

If you map the handler above to /websocket in your application, you can invoke it in JavaScript with:

var ws = new WebSocket("ws://localhost:8888/websocket");
ws.onopen = function() {

ws.send("Hello, world");
};
ws.onmessage = function (evt) {

alert(evt.data);
};

This script pops up an alert box that says “You said: Hello, world”.

Event handlers

WebSocketHandler.open()
Invoked when a new WebSocket is opened.

4.4. tornado.websocket — Bidirectional communication to the browser 75

http://dev.w3.org/html5/websockets/
http://tools.ietf.org/html/rfc6455
http://caniuse.com/websockets
http://dev.w3.org/html5/websockets/
http://tools.ietf.org/html/rfc6455

Tornado Documentation, Release 3.1

The arguments to open are extracted from the tornado.web.URLSpec regular expression, just like the
arguments to tornado.web.RequestHandler.get.

WebSocketHandler.on_message(message)
Handle incoming messages on the WebSocket

This method must be overridden.

WebSocketHandler.on_close()
Invoked when the WebSocket is closed.

WebSocketHandler.select_subprotocol(subprotocols)
Invoked when a new WebSocket requests specific subprotocols.

subprotocols is a list of strings identifying the subprotocols proposed by the client. This method may be
overridden to return one of those strings to select it, or None to not select a subprotocol. Failure to select a
subprotocol does not automatically abort the connection, although clients may close the connection if none of
their proposed subprotocols was selected.

Output

WebSocketHandler.write_message(message, binary=False)
Sends the given message to the client of this Web Socket.

The message may be either a string or a dict (which will be encoded as json). If the binary argument is false,
the message will be sent as utf8; in binary mode any byte string is allowed.

WebSocketHandler.close()
Closes this Web Socket.

Once the close handshake is successful the socket will be closed.

Configuration

WebSocketHandler.allow_draft76()
Override to enable support for the older “draft76” protocol.

The draft76 version of the websocket protocol is disabled by default due to security concerns, but it can be
enabled by overriding this method to return True.

Connections using the draft76 protocol do not support the binary=True flag to write_message.

Support for the draft76 protocol is deprecated and will be removed in a future version of Tornado.

WebSocketHandler.get_websocket_scheme()
Return the url scheme used for this request, either “ws” or “wss”.

This is normally decided by HTTPServer, but applications may wish to override this if they are using an SSL
proxy that does not provide the X-Scheme header as understood by HTTPServer.

Note that this is only used by the draft76 protocol.

WebSocketHandler.set_nodelay(value)
Set the no-delay flag for this stream.

By default, small messages may be delayed and/or combined to minimize the number of packets sent. This
can sometimes cause 200-500ms delays due to the interaction between Nagle’s algorithm and TCP de-
layed ACKs. To reduce this delay (at the expense of possibly increasing bandwidth usage), call self.
set_nodelay(True) once the websocket connection is established.

See BaseIOStream.set_nodelay for additional details.

76 Chapter 4. Integration with other services

Tornado Documentation, Release 3.1

New in version 3.1.

Other

WebSocketHandler.async_callback(callback, *args, **kwargs)
Obsolete - catches exceptions from the wrapped function.

This function is normally unncecessary thanks to tornado.stack_context.

WebSocketHandler.ping(data)
Send ping frame to the remote end.

WebSocketHandler.on_pong(data)
Invoked when the response to a ping frame is received.

Client-side support

tornado.websocket.websocket_connect(url, io_loop=None, callback=None, con-
nect_timeout=None)

Client-side websocket support.

Takes a url and returns a Future whose result is a WebSocketClientConnection.

class tornado.websocket.WebSocketClientConnection(io_loop, request)
WebSocket client connection.

write_message(message, binary=False)
Sends a message to the WebSocket server.

read_message(callback=None)
Reads a message from the WebSocket server.

Returns a future whose result is the message, or None if the connection is closed. If a callback argument
is given it will be called with the future when it is ready.

tornado.wsgi — Interoperability with other Python frameworks and
servers

WSGI support for the Tornado web framework.

WSGI is the Python standard for web servers, and allows for interoperability between Tornado and other Python web
frameworks and servers. This module provides WSGI support in two ways:

• WSGIApplication is a version of tornado.web.Application that can run inside a WSGI server.
This is useful for running a Tornado app on another HTTP server, such as Google App Engine. See the
WSGIApplication class documentation for limitations that apply.

• WSGIContainer lets you run other WSGI applications and frameworks on the Tornado HTTP server. For
example, with this class you can mix Django and Tornado handlers in a single server.

WSGIApplication

class tornado.wsgi.WSGIApplication(handlers=None, default_host=’‘, **settings)
A WSGI equivalent of tornado.web.Application.

4.5. tornado.wsgi — Interoperability with other Python frameworks and servers 77

Tornado Documentation, Release 3.1

WSGIApplication is very similar to tornado.web.Application, except no asynchronous methods
are supported (since WSGI does not support non-blocking requests properly). If you call self.flush() or
other asynchronous methods in your request handlers running in a WSGIApplication, we throw an excep-
tion.

Example usage:

import tornado.web
import tornado.wsgi
import wsgiref.simple_server

class MainHandler(tornado.web.RequestHandler):
def get(self):

self.write("Hello, world")

if __name__ == "__main__":
application = tornado.wsgi.WSGIApplication([

(r"/", MainHandler),
])
server = wsgiref.simple_server.make_server('', 8888, application)
server.serve_forever()

See the appengine demo for an example of using this module to run a Tornado app on Google App Engine.

WSGI applications use the same RequestHandler class, but not @asynchronous methods or flush().
This means that it is not possible to use AsyncHTTPClient, or the tornado.auth or tornado.
websocket modules.

class tornado.wsgi.HTTPRequest(environ)
Mimics tornado.httpserver.HTTPRequest for WSGI applications.

Parses the given WSGI environment to construct the request.

supports_http_1_1()
Returns True if this request supports HTTP/1.1 semantics

cookies
A dictionary of Cookie.Morsel objects.

full_url()
Reconstructs the full URL for this request.

request_time()
Returns the amount of time it took for this request to execute.

WSGIContainer

class tornado.wsgi.WSGIContainer(wsgi_application)
Makes a WSGI-compatible function runnable on Tornado’s HTTP server.

Wrap a WSGI function in a WSGIContainer and pass it to HTTPServer to run it. For example:

def simple_app(environ, start_response):
status = "200 OK"
response_headers = [("Content-type", "text/plain")]
start_response(status, response_headers)
return ["Hello world!\n"]

container = tornado.wsgi.WSGIContainer(simple_app)
http_server = tornado.httpserver.HTTPServer(container)

78 Chapter 4. Integration with other services

https://github.com/facebook/tornado/tree/master/demos/appengine

Tornado Documentation, Release 3.1

http_server.listen(8888)
tornado.ioloop.IOLoop.instance().start()

This class is intended to let other frameworks (Django, web.py, etc) run on the Tornado HTTP server and I/O
loop.

The tornado.web.FallbackHandler class is often useful for mixing Tornado and WSGI apps in the
same server. See https://github.com/bdarnell/django-tornado-demo for a complete example.

static environ(request)
Converts a tornado.httpserver.HTTPRequest to a WSGI environment.

4.5. tornado.wsgi — Interoperability with other Python frameworks and servers 79

https://github.com/bdarnell/django-tornado-demo

Tornado Documentation, Release 3.1

80 Chapter 4. Integration with other services

CHAPTER 5

Utilities

tornado.autoreload — Automatically detect code changes in de-
velopment

xAutomatically restart the server when a source file is modified.

Most applications should not access this module directly. Instead, pass the keyword argument debug=True to the
tornado.web.Application constructor. This will enable autoreload mode as well as checking for changes to
templates and static resources. Note that restarting is a destructive operation and any requests in progress will be
aborted when the process restarts.

This module can also be used as a command-line wrapper around scripts such as unit test runners. See the main
method for details.

The command-line wrapper and Application debug modes can be used together. This combination is encouraged as
the wrapper catches syntax errors and other import-time failures, while debug mode catches changes once the server
has started.

This module depends on IOLoop, so it will not work in WSGI applications and Google App Engine. It also will not
work correctly when HTTPServer‘s multi-process mode is used.

Reloading loses any Python interpreter command-line arguments (e.g. -u) because it re-executes Python using sys.
executable and sys.argv. Additionally, modifying these variables will cause reloading to behave incorrectly.

tornado.autoreload.add_reload_hook(fn)
Add a function to be called before reloading the process.

Note that for open file and socket handles it is generally preferable to set the FD_CLOEXEC flag (using fcntl
or tornado.platform.auto.set_close_exec) instead of using a reload hook to close them.

tornado.autoreload.main()
Command-line wrapper to re-run a script whenever its source changes.

Scripts may be specified by filename or module name:

81

http://python.readthedocs.io/en/latest/library/fcntl.html#module-fcntl

Tornado Documentation, Release 3.1

python -m tornado.autoreload -m tornado.test.runtests
python -m tornado.autoreload tornado/test/runtests.py

Running a script with this wrapper is similar to calling tornado.autoreload.wait at the end of the script,
but this wrapper can catch import-time problems like syntax errors that would otherwise prevent the script from
reaching its call to wait.

tornado.autoreload.start(io_loop=None, check_time=500)
Begins watching source files for changes using the given IOLoop.

tornado.autoreload.wait()
Wait for a watched file to change, then restart the process.

Intended to be used at the end of scripts like unit test runners, to run the tests again after any source file changes
(but see also the command-line interface in main)

tornado.autoreload.watch(filename)
Add a file to the watch list.

All imported modules are watched by default.

tornado.concurrent — Work with threads and futures

Utilities for working with threads and Futures.

Futures are a pattern for concurrent programming introduced in Python 3.2 in the concurrent.futures pack-
age (this package has also been backported to older versions of Python and can be installed with pip install
futures). Tornado will use concurrent.futures.Future if it is available; otherwise it will use a compati-
ble class defined in this module.

class tornado.concurrent.Future
A Future encapsulates the result of an asynchronous operation. In synchronous applications Futures are
used to wait for the result from a thread or process pool; in Tornado they are normally used with IOLoop.
add_future or by yielding them in a gen.coroutine.

If the concurrent.futures package is available, tornado.concurrent.Future is simply an alias
for concurrent.futures.Future. Otherwise, we support the same interface with a few limitations:

•It is an error to call result or exception before the Future has completed.

•Cancellation is not supported.

result()
If the operation succeeded, return its result. If it failed, re-raise its exception.

exception()
If the operation raised an exception, return the Exception object. Otherwise returns None.

add_done_callback(fn)
Attaches the given callback to the Future. It will be invoked with the Future as its argument when it
has finished running and its result is available. In Tornado consider using IOLoop.add_future instead
of calling add_done_callback directly.

done()
Returns True if the future has finished running and its result and exception methods are available.

class tornado.concurrent.TracebackFuture
Subclass of Future which can store a traceback with exceptions.

82 Chapter 5. Utilities

http://python.readthedocs.io/en/latest/library/concurrent.futures.html#module-concurrent.futures
http://python.readthedocs.io/en/latest/library/concurrent.futures.html#concurrent.futures.Future
http://python.readthedocs.io/en/latest/library/concurrent.futures.html#module-concurrent.futures
http://python.readthedocs.io/en/latest/library/concurrent.futures.html#concurrent.futures.Future
http://python.readthedocs.io/en/latest/library/exceptions.html#Exception

Tornado Documentation, Release 3.1

The traceback is automatically available in Python 3, but in the Python 2 futures backport this information is
discarded.

set_exc_info(exc_info)
Traceback-aware replacement for set_exception.

tornado.concurrent.run_on_executor(fn)
Decorator to run a synchronous method asynchronously on an executor.

The decorated method may be called with a callback keyword argument and returns a future.

tornado.concurrent.return_future(f)
Decorator to make a function that returns via callback return a Future.

The wrapped function should take a callback keyword argument and invoke it with one argument when
it has finished. To signal failure, the function can simply raise an exception (which will be captured by the
StackContext and passed along to the Future).

From the caller’s perspective, the callback argument is optional. If one is given, it will be invoked when the
function is complete with Future.result() as an argument. If the function fails, the callback will not be
run and an exception will be raised into the surrounding StackContext.

If no callback is given, the caller should use the Future to wait for the function to complete (perhaps by
yielding it in a gen.engine function, or passing it to IOLoop.add_future).

Usage:

@return_future
def future_func(arg1, arg2, callback):

Do stuff (possibly asynchronous)
callback(result)

@gen.engine
def caller(callback):

yield future_func(arg1, arg2)
callback()

Note that @return_future and @gen.engine can be applied to the same function, provided
@return_future appears first. However, consider using @gen.coroutine instead of this combination.

tornado.concurrent.chain_future(a, b)
Chain two futures together so that when one completes, so does the other.

The result (success or failure) of a will be copied to b.

tornado.httputil — Manipulate HTTP headers and URLs

HTTP utility code shared by clients and servers.

class tornado.httputil.HTTPHeaders(*args, **kwargs)
A dictionary that maintains Http-Header-Case for all keys.

Supports multiple values per key via a pair of new methods, add() and get_list(). The regular dictionary
interface returns a single value per key, with multiple values joined by a comma.

>>> h = HTTPHeaders({"content-type": "text/html"})
>>> list(h.keys())
['Content-Type']
>>> h["Content-Type"]
'text/html'

5.3. tornado.httputil — Manipulate HTTP headers and URLs 83

http://python.readthedocs.io/en/latest/library/concurrent.futures.html#concurrent.futures.Future.set_exception

Tornado Documentation, Release 3.1

>>> h.add("Set-Cookie", "A=B")
>>> h.add("Set-Cookie", "C=D")
>>> h["set-cookie"]
'A=B,C=D'
>>> h.get_list("set-cookie")
['A=B', 'C=D']

>>> for (k,v) in sorted(h.get_all()):
... print('%s: %s' % (k,v))
...
Content-Type: text/html
Set-Cookie: A=B
Set-Cookie: C=D

add(name, value)
Adds a new value for the given key.

get_list(name)
Returns all values for the given header as a list.

get_all()
Returns an iterable of all (name, value) pairs.

If a header has multiple values, multiple pairs will be returned with the same name.

parse_line(line)
Updates the dictionary with a single header line.

>>> h = HTTPHeaders()
>>> h.parse_line("Content-Type: text/html")
>>> h.get('content-type')
'text/html'

classmethod parse(headers)
Returns a dictionary from HTTP header text.

>>> h = HTTPHeaders.parse("Content-Type: text/html\r\nContent-Length: 42\r\n")
>>> sorted(h.items())
[('Content-Length', '42'), ('Content-Type', 'text/html')]

tornado.httputil.url_concat(url, args)
Concatenate url and argument dictionary regardless of whether url has existing query parameters.

>>> url_concat("http://example.com/foo?a=b", dict(c="d"))
'http://example.com/foo?a=b&c=d'

class tornado.httputil.HTTPFile
Represents a file uploaded via a form.

For backwards compatibility, its instance attributes are also accessible as dictionary keys.

•filename

•body

•content_type

tornado.httputil.parse_body_arguments(content_type, body, arguments, files)
Parses a form request body.

84 Chapter 5. Utilities

Tornado Documentation, Release 3.1

Supports application/x-www-form-urlencoded and multipart/form-data. The
content_type parameter should be a string and body should be a byte string. The arguments
and files parameters are dictionaries that will be updated with the parsed contents.

tornado.httputil.parse_multipart_form_data(boundary, data, arguments, files)
Parses a multipart/form-data body.

The boundary and data parameters are both byte strings. The dictionaries given in the arguments and files
parameters will be updated with the contents of the body.

tornado.httputil.format_timestamp(ts)
Formats a timestamp in the format used by HTTP.

The argument may be a numeric timestamp as returned by time.time, a time tuple as returned by time.
gmtime, or a datetime.datetime object.

>>> format_timestamp(1359312200)
'Sun, 27 Jan 2013 18:43:20 GMT'

tornado.log — Logging support

Logging support for Tornado.

Tornado uses three logger streams:

• tornado.access: Per-request logging for Tornado’s HTTP servers (and potentially other servers in the
future)

• tornado.application: Logging of errors from application code (i.e. uncaught exceptions from callbacks)

• tornado.general: General-purpose logging, including any errors or warnings from Tornado itself.

These streams may be configured independently using the standard library’s logging module. For example, you
may wish to send tornado.access logs to a separate file for analysis.

class tornado.log.LogFormatter(color=True, *args, **kwargs)
Log formatter used in Tornado.

Key features of this formatter are:

•Color support when logging to a terminal that supports it.

•Timestamps on every log line.

•Robust against str/bytes encoding problems.

This formatter is enabled automatically by tornado.options.parse_command_line (unless
--logging=none is used).

tornado.log.enable_pretty_logging(options=None, logger=None)
Turns on formatted logging output as configured.

This is called automaticaly by tornado.options.parse_command_line and tornado.options.
parse_config_file.

tornado.options — Command-line parsing

A command line parsing module that lets modules define their own options.

5.4. tornado.log — Logging support 85

http://python.readthedocs.io/en/latest/library/time.html#time.time
http://python.readthedocs.io/en/latest/library/time.html#time.gmtime
http://python.readthedocs.io/en/latest/library/time.html#time.gmtime
http://python.readthedocs.io/en/latest/library/datetime.html#datetime.datetime
http://python.readthedocs.io/en/latest/library/logging.html#module-logging

Tornado Documentation, Release 3.1

Each module defines its own options which are added to the global option namespace, e.g.:

from tornado.options import define, options

define("mysql_host", default="127.0.0.1:3306", help="Main user DB")
define("memcache_hosts", default="127.0.0.1:11011", multiple=True,

help="Main user memcache servers")

def connect():
db = database.Connection(options.mysql_host)
...

The main()method of your application does not need to be aware of all of the options used throughout your program;
they are all automatically loaded when the modules are loaded. However, all modules that define options must have
been imported before the command line is parsed.

Your main() method can parse the command line or parse a config file with either:

tornado.options.parse_command_line()
or
tornado.options.parse_config_file("/etc/server.conf")

Command line formats are what you would expect (--myoption=myvalue). Config files are just Python files.
Global names become options, e.g.:

myoption = "myvalue"
myotheroption = "myothervalue"

We support datetimes, timedeltas, ints, and floats (just pass a type kwarg to define). We also accept
multi-value options. See the documentation for define() below.

tornado.options.options is a singleton instance of OptionParser, and the top-level functions in this mod-
ule (define, parse_command_line, etc) simply call methods on it. You may create additional OptionParser
instances to define isolated sets of options, such as for subcommands.

Global functions

tornado.options.define(name, default=None, type=None, help=None, metavar=None, multi-
ple=False, group=None, callback=None)

Defines an option in the global namespace.

See OptionParser.define.

tornado.options.options
Global options object. All defined options are available as attributes on this object.

tornado.options.parse_command_line(args=None, final=True)
Parses global options from the command line.

See OptionParser.parse_command_line.

tornado.options.parse_config_file(path, final=True)
Parses global options from a config file.

See OptionParser.parse_config_file.

tornado.options.print_help(file=sys.stderr)
Prints all the command line options to stderr (or another file).

See OptionParser.print_help.

86 Chapter 5. Utilities

http://python.readthedocs.io/en/latest/library/datetime.html#datetime.datetime
http://python.readthedocs.io/en/latest/library/datetime.html#datetime.timedelta

Tornado Documentation, Release 3.1

tornado.options.add_parse_callback(callback)
Adds a parse callback, to be invoked when option parsing is done.

See OptionParser.add_parse_callback

exception tornado.options.Error
Exception raised by errors in the options module.

OptionParser class

class tornado.options.OptionParser
A collection of options, a dictionary with object-like access.

Normally accessed via static functions in the tornado.options module, which reference a global instance.

add_parse_callback(callback)
Adds a parse callback, to be invoked when option parsing is done.

as_dict()
The names and values of all options.

New in version 3.1.

define(name, default=None, type=None, help=None, metavar=None, multiple=False, group=None,
callback=None)

Defines a new command line option.

If type is given (one of str, float, int, datetime, or timedelta) or can be inferred from the default, we
parse the command line arguments based on the given type. If multiple is True, we accept comma-
separated values, and the option value is always a list.

For multi-value integers, we also accept the syntax x:y, which turns into range(x, y) - very useful
for long integer ranges.

help and metavar are used to construct the automatically generated command line help string. The
help message is formatted like:

--name=METAVAR help string

group is used to group the defined options in logical groups. By default, command line options are
grouped by the file in which they are defined.

Command line option names must be unique globally. They can be parsed from the command line with
parse_command_line or parsed from a config file with parse_config_file.

If a callback is given, it will be run with the new value whenever the option is changed. This can be
used to combine command-line and file-based options:

define("config", type=str, help="path to config file",
callback=lambda path: parse_config_file(path, final=False))

With this definition, options in the file specified by --config will override options set earlier on the
command line, but can be overridden by later flags.

group_dict(group)
The names and values of options in a group.

Useful for copying options into Application settings:

5.5. tornado.options — Command-line parsing 87

Tornado Documentation, Release 3.1

from tornado.options import define, parse_command_line, options

define('template_path', group='application')
define('static_path', group='application')

parse_command_line()

application = Application(
handlers, **options.group_dict('application'))

New in version 3.1.

groups()
The set of option-groups created by define.

New in version 3.1.

items()
A sequence of (name, value) pairs.

New in version 3.1.

mockable()
Returns a wrapper around self that is compatible with mock.patch.

The mock.patch function (included in the standard library unittest.mock package since Python
3.3, or in the third-party mock package for older versions of Python) is incompatible with objects like
options that override __getattr__ and __setattr__. This function returns an object that can be
used with mock.patch.object to modify option values:

with mock.patch.object(options.mockable(), 'name', value):
assert options.name == value

parse_command_line(args=None, final=True)
Parses all options given on the command line (defaults to sys.argv).

Note that args[0] is ignored since it is the program name in sys.argv.

We return a list of all arguments that are not parsed as options.

If final is False, parse callbacks will not be run. This is useful for applications that wish to combine
configurations from multiple sources.

parse_config_file(path, final=True)
Parses and loads the Python config file at the given path.

If final is False, parse callbacks will not be run. This is useful for applications that wish to combine
configurations from multiple sources.

print_help(file=None)
Prints all the command line options to stderr (or another file).

tornado.process — Utilities for multiple processes

Utilities for working with multiple processes, including both forking the server into multiple processes and managing
subprocesses.

tornado.process.cpu_count()
Returns the number of processors on this machine.

88 Chapter 5. Utilities

http://python.readthedocs.io/en/latest/library/unittest.mock.html#unittest.mock.patch
http://python.readthedocs.io/en/latest/library/unittest.mock.html#unittest.mock.patch
http://python.readthedocs.io/en/latest/library/unittest.mock.html#module-unittest.mock
http://python.readthedocs.io/en/latest/library/unittest.mock.html#unittest.mock.patch.object
http://python.readthedocs.io/en/latest/library/sys.html#sys.argv
http://python.readthedocs.io/en/latest/library/sys.html#sys.argv

Tornado Documentation, Release 3.1

tornado.process.fork_processes(num_processes, max_restarts=100)
Starts multiple worker processes.

If num_processes is None or <= 0, we detect the number of cores available on this machine and fork that
number of child processes. If num_processes is given and > 0, we fork that specific number of sub-processes.

Since we use processes and not threads, there is no shared memory between any server code.

Note that multiple processes are not compatible with the autoreload module (or the debug=True option to
tornado.web.Application). When using multiple processes, no IOLoops can be created or referenced
until after the call to fork_processes.

In each child process, fork_processes returns its task id, a number between 0 and num_processes.
Processes that exit abnormally (due to a signal or non-zero exit status) are restarted with the same id (up to
max_restarts times). In the parent process, fork_processes returns None if all child processes have
exited normally, but will otherwise only exit by throwing an exception.

tornado.process.task_id()
Returns the current task id, if any.

Returns None if this process was not created by fork_processes.

class tornado.process.Subprocess(*args, **kwargs)
Wraps subprocess.Popen with IOStream support.

The constructor is the same as subprocess.Popen with the following additions:

•stdin, stdout, and stderr may have the value tornado.process.Subprocess.STREAM,
which will make the corresponding attribute of the resulting Subprocess a PipeIOStream.

•A new keyword argument io_loop may be used to pass in an IOLoop.

set_exit_callback(callback)
Runs callback when this process exits.

The callback takes one argument, the return code of the process.

This method uses a SIGCHILD handler, which is a global setting and may conflict if you have other
libraries trying to handle the same signal. If you are using more than one IOLoop it may be necessary to
call Subprocess.initialize first to designate one IOLoop to run the signal handlers.

In many cases a close callback on the stdout or stderr streams can be used as an alternative to an exit
callback if the signal handler is causing a problem.

classmethod initialize(io_loop=None)
Initializes the SIGCHILD handler.

The signal handler is run on an IOLoop to avoid locking issues. Note that the IOLoop used for signal
handling need not be the same one used by individual Subprocess objects (as long as the IOLoops are
each running in separate threads).

classmethod uninitialize()
Removes the SIGCHILD handler.

tornado.stack_context — Exception handling across asyn-
chronous callbacks

StackContext allows applications to maintain threadlocal-like state that follows execution as it moves to other
execution contexts.

5.7. tornado.stack_context — Exception handling across asynchronous callbacks 89

Tornado Documentation, Release 3.1

The motivating examples are to eliminate the need for explicit async_callback wrappers (as in tornado.web.
RequestHandler), and to allow some additional context to be kept for logging.

This is slightly magic, but it’s an extension of the idea that an exception handler is a kind of stack-local state and
when that stack is suspended and resumed in a new context that state needs to be preserved. StackContext
shifts the burden of restoring that state from each call site (e.g. wrapping each AsyncHTTPClient callback in
async_callback) to the mechanisms that transfer control from one context to another (e.g. AsyncHTTPClient
itself, IOLoop, thread pools, etc).

Example usage:

@contextlib.contextmanager
def die_on_error():

try:
yield

except Exception:
logging.error("exception in asynchronous operation",exc_info=True)
sys.exit(1)

with StackContext(die_on_error):
Any exception thrown here *or in callback and its desendents*
will cause the process to exit instead of spinning endlessly
in the ioloop.
http_client.fetch(url, callback)

ioloop.start()

Most applications shouln’t have to work with StackContext directly. Here are a few rules of thumb for when it’s
necessary:

• If you’re writing an asynchronous library that doesn’t rely on a stack_context-aware library like tornado.
ioloop or tornado.iostream (for example, if you’re writing a thread pool), use stack_context.
wrap() before any asynchronous operations to capture the stack context from where the operation was started.

• If you’re writing an asynchronous library that has some shared resources (such as a connection pool), cre-
ate those shared resources within a with stack_context.NullContext(): block. This will prevent
StackContexts from leaking from one request to another.

• If you want to write something like an exception handler that will persist across asynchronous calls, create a
new StackContext (or ExceptionStackContext), and make your asynchronous calls in a with block
that references your StackContext.

class tornado.stack_context.StackContext(context_factory)
Establishes the given context as a StackContext that will be transferred.

Note that the parameter is a callable that returns a context manager, not the context itself. That is, where for a
non-transferable context manager you would say:

with my_context():

StackContext takes the function itself rather than its result:

with StackContext(my_context):

The result of with StackContext() as cb: is a deactivation callback. Run this callback when the
StackContext is no longer needed to ensure that it is not propagated any further (note that deactivating a context
does not affect any instances of that context that are currently pending). This is an advanced feature and not
necessary in most applications.

class tornado.stack_context.ExceptionStackContext(exception_handler)
Specialization of StackContext for exception handling.

90 Chapter 5. Utilities

Tornado Documentation, Release 3.1

The supplied exception_handler function will be called in the event of an uncaught exception in this
context. The semantics are similar to a try/finally clause, and intended use cases are to log an error, close a
socket, or similar cleanup actions. The exc_info triple (type, value, traceback) will be passed to
the exception_handler function.

If the exception handler returns true, the exception will be consumed and will not be propagated to other excep-
tion handlers.

class tornado.stack_context.NullContext
Resets the StackContext.

Useful when creating a shared resource on demand (e.g. an AsyncHTTPClient) where the stack that caused
the creating is not relevant to future operations.

tornado.stack_context.wrap(fn)
Returns a callable object that will restore the current StackContext when executed.

Use this whenever saving a callback to be executed later in a different execution context (either in a different
thread or asynchronously in the same thread).

tornado.stack_context.run_with_stack_context(context, func)
Run a coroutine func in the given StackContext.

It is not safe to have a yield statement within a with StackContext block, so it is difficult to use stack
context with gen.coroutine. This helper function runs the function in the correct context while keeping the
yield and with statements syntactically separate.

Example:

@gen.coroutine
def incorrect():

with StackContext(ctx):
ERROR: this will raise StackContextInconsistentError
yield other_coroutine()

@gen.coroutine
def correct():

yield run_with_stack_context(StackContext(ctx), other_coroutine)

New in version 3.1.

tornado.testing — Unit testing support for asynchronous code

Support classes for automated testing.

• AsyncTestCase and AsyncHTTPTestCase: Subclasses of unittest.TestCase with additional support for
testing asynchronous (IOLoop based) code.

• ExpectLog and LogTrapTestCase: Make test logs less spammy.

• main(): A simple test runner (wrapper around unittest.main()) with support for the tornado.autoreload module
to rerun the tests when code changes.

Asynchronous test cases

class tornado.testing.AsyncTestCase(*args, **kwargs)
TestCase subclass for testing IOLoop-based asynchronous code.

5.8. tornado.testing — Unit testing support for asynchronous code 91

http://python.readthedocs.io/en/latest/library/unittest.html#unittest.TestCase

Tornado Documentation, Release 3.1

The unittest framework is synchronous, so the test must be complete by the time the test method returns. This
means that asynchronous code cannot be used in quite the same way as usual. To write test functions that
use the same yield-based patterns used with the tornado.gen module, decorate your test methods with
tornado.testing.gen_test instead of tornado.gen.coroutine. This class also provides the
stop() and wait() methods for a more manual style of testing. The test method itself must call self.
wait(), and asynchronous callbacks should call self.stop() to signal completion.

By default, a new IOLoop is constructed for each test and is available as self.io_loop. This IOLoop
should be used in the construction of HTTP clients/servers, etc. If the code being tested requires a global
IOLoop, subclasses should override get_new_ioloop to return it.

The IOLoop‘s start and stop methods should not be called directly. Instead, use self.stop and self.
wait. Arguments passed to self.stop are returned from self.wait. It is possible to have multiple
wait/stop cycles in the same test.

Example:

This test uses coroutine style.
class MyTestCase(AsyncTestCase):

@tornado.testing.gen_test
def test_http_fetch(self):

client = AsyncHTTPClient(self.io_loop)
response = yield client.fetch("http://www.tornadoweb.org")
Test contents of response
self.assertIn("FriendFeed", response.body)

This test uses argument passing between self.stop and self.wait.
class MyTestCase2(AsyncTestCase):

def test_http_fetch(self):
client = AsyncHTTPClient(self.io_loop)
client.fetch("http://www.tornadoweb.org/", self.stop)
response = self.wait()
Test contents of response
self.assertIn("FriendFeed", response.body)

This test uses an explicit callback-based style.
class MyTestCase3(AsyncTestCase):

def test_http_fetch(self):
client = AsyncHTTPClient(self.io_loop)
client.fetch("http://www.tornadoweb.org/", self.handle_fetch)
self.wait()

def handle_fetch(self, response):
Test contents of response (failures and exceptions here
will cause self.wait() to throw an exception and end the
test).
Exceptions thrown here are magically propagated to
self.wait() in test_http_fetch() via stack_context.
self.assertIn("FriendFeed", response.body)
self.stop()

get_new_ioloop()
Creates a new IOLoop for this test. May be overridden in subclasses for tests that require a specific
IOLoop (usually the singleton IOLoop.instance()).

stop(_arg=None, **kwargs)
Stops the IOLoop, causing one pending (or future) call to wait() to return.

Keyword arguments or a single positional argument passed to stop() are saved and will be returned by

92 Chapter 5. Utilities

Tornado Documentation, Release 3.1

wait().

wait(condition=None, timeout=None)
Runs the IOLoop until stop is called or timeout has passed.

In the event of a timeout, an exception will be thrown. The default timeout is 5 seconds; it may be over-
ridden with a timeout keyword argument or globally with the ASYNC_TEST_TIMEOUT environment
variable.

If condition is not None, the IOLoop will be restarted after stop() until condition() returns
true.

Changed in version 3.1: Added the ASYNC_TEST_TIMEOUT environment variable.

class tornado.testing.AsyncHTTPTestCase(*args, **kwargs)
A test case that starts up an HTTP server.

Subclasses must override get_app(), which returns the tornado.web.Application (or other
HTTPServer callback) to be tested. Tests will typically use the provided self.http_client to fetch
URLs from this server.

Example:

class MyHTTPTest(AsyncHTTPTestCase):
def get_app(self):

return Application([('/', MyHandler)...])

def test_homepage(self):
The following two lines are equivalent to
response = self.fetch('/')
but are shown in full here to demonstrate explicit use
of self.stop and self.wait.
self.http_client.fetch(self.get_url('/'), self.stop)
response = self.wait()
test contents of response

fetch(path, **kwargs)
Convenience method to synchronously fetch a url.

The given path will be appended to the local server’s host and port. Any additional kwargs will be passed
directly to AsyncHTTPClient.fetch (and so could be used to pass method="POST", body="..
.", etc).

get_app()
Should be overridden by subclasses to return a tornado.web.Application or other HTTPServer
callback.

get_http_port()
Returns the port used by the server.

A new port is chosen for each test.

get_httpserver_options()
May be overridden by subclasses to return additional keyword arguments for the server.

get_url(path)
Returns an absolute url for the given path on the test server.

class tornado.testing.AsyncHTTPSTestCase(*args, **kwargs)
A test case that starts an HTTPS server.

Interface is generally the same as AsyncHTTPTestCase.

5.8. tornado.testing — Unit testing support for asynchronous code 93

Tornado Documentation, Release 3.1

get_ssl_options()
May be overridden by subclasses to select SSL options.

By default includes a self-signed testing certificate.

tornado.testing.gen_test(func=None, timeout=None)
Testing equivalent of @gen.coroutine, to be applied to test methods.

@gen.coroutine cannot be used on tests because the IOLoop is not already running. @gen_test should
be applied to test methods on subclasses of AsyncTestCase.

Example:

class MyTest(AsyncHTTPTestCase):
@gen_test
def test_something(self):

response = yield gen.Task(self.fetch('/'))

By default, @gen_test times out after 5 seconds. The timeout may be overridden globally with the
ASYNC_TEST_TIMEOUT environment variable, or for each test with the timeout keyword argument:

class MyTest(AsyncHTTPTestCase):
@gen_test(timeout=10)
def test_something_slow(self):

response = yield gen.Task(self.fetch('/'))

New in version 3.1: The timeout argument and ASYNC_TEST_TIMEOUT environment variable.

Controlling log output

class tornado.testing.ExpectLog(logger, regex, required=True)
Context manager to capture and suppress expected log output.

Useful to make tests of error conditions less noisy, while still leaving unexpected log entries visible. Not thread
safe.

Usage:

with ExpectLog('tornado.application', "Uncaught exception"):
error_response = self.fetch("/some_page")

Constructs an ExpectLog context manager.

Parameters

• logger – Logger object (or name of logger) to watch. Pass an empty string to watch the
root logger.

• regex – Regular expression to match. Any log entries on the specified logger that match
this regex will be suppressed.

• required – If true, an exeption will be raised if the end of the with statement is reached
without matching any log entries.

class tornado.testing.LogTrapTestCase(methodName=’runTest’)
A test case that captures and discards all logging output if the test passes.

Some libraries can produce a lot of logging output even when the test succeeds, so this class can be useful to
minimize the noise. Simply use it as a base class for your test case. It is safe to combine with AsyncTestCase
via multiple inheritance (class MyTestCase(AsyncHTTPTestCase, LogTrapTestCase):)

94 Chapter 5. Utilities

Tornado Documentation, Release 3.1

This class assumes that only one log handler is configured and that it is a StreamHandler. This is true
for both logging.basicConfig and the “pretty logging” configured by tornado.options. It is not
compatible with other log buffering mechanisms, such as those provided by some test runners.

Create an instance of the class that will use the named test method when executed. Raises a ValueError if the
instance does not have a method with the specified name.

Test runner

tornado.testing.main(**kwargs)
A simple test runner.

This test runner is essentially equivalent to unittest.main from the standard library, but adds support for
tornado-style option parsing and log formatting.

The easiest way to run a test is via the command line:

python -m tornado.testing tornado.test.stack_context_test

See the standard library unittest module for ways in which tests can be specified.

Projects with many tests may wish to define a test script like tornado/test/runtests.py. This script
should define a method all() which returns a test suite and then call tornado.testing.main(). Note
that even when a test script is used, the all() test suite may be overridden by naming a single test on the
command line:

Runs all tests
python -m tornado.test.runtests
Runs one test
python -m tornado.test.runtests tornado.test.stack_context_test

Additional keyword arguments passed through to unittest.main(). For example, use tornado.
testing.main(verbosity=2) to show many test details as they are run. See http://docs.python.org/
library/unittest.html#unittest.main for full argument list.

Helper functions

tornado.testing.bind_unused_port()
Binds a server socket to an available port on localhost.

Returns a tuple (socket, port).

tornado.testing.get_unused_port()
Returns a (hopefully) unused port number.

This function does not guarantee that the port it returns is available, only that a series of get_unused_port calls
in a single process return distinct ports.

Deprecated. Use bind_unused_port instead, which is guaranteed to find an unused port.

tornado.testing.get_async_test_timeout()
Get the global timeout setting for async tests.

Returns a float, the timeout in seconds.

New in version 3.1.

5.8. tornado.testing — Unit testing support for asynchronous code 95

http://python.readthedocs.io/en/latest/library/logging.handlers.html#logging.StreamHandler
http://python.readthedocs.io/en/latest/library/logging.html#logging.basicConfig
http://python.readthedocs.io/en/latest/library/unittest.html#unittest.main
http://docs.python.org/library/unittest.html#unittest.main
http://docs.python.org/library/unittest.html#unittest.main

Tornado Documentation, Release 3.1

tornado.util — General-purpose utilities

Miscellaneous utility functions and classes.

This module is used internally by Tornado. It is not necessarily expected that the functions and classes defined here
will be useful to other applications, but they are documented here in case they are.

The one public-facing part of this module is the Configurable class and its configure method, which becomes
a part of the interface of its subclasses, including AsyncHTTPClient, IOLoop, and Resolver.

class tornado.util.ObjectDict
Makes a dictionary behave like an object, with attribute-style access.

class tornado.util.GzipDecompressor
Streaming gzip decompressor.

The interface is like that of zlib.decompressobj (without the optional arguments, but it understands gzip
headers and checksums.

decompress(value)
Decompress a chunk, returning newly-available data.

Some data may be buffered for later processing; flush must be called when there is no more input data
to ensure that all data was processed.

flush()
Return any remaining buffered data not yet returned by decompress.

Also checks for errors such as truncated input. No other methods may be called on this object after flush.

tornado.util.import_object(name)
Imports an object by name.

import_object(‘x’) is equivalent to ‘import x’. import_object(‘x.y.z’) is equivalent to ‘from x.y import z’.

>>> import tornado.escape
>>> import_object('tornado.escape') is tornado.escape
True
>>> import_object('tornado.escape.utf8') is tornado.escape.utf8
True
>>> import_object('tornado') is tornado
True
>>> import_object('tornado.missing_module')
Traceback (most recent call last):

...
ImportError: No module named missing_module

class tornado.util.Configurable
Base class for configurable interfaces.

A configurable interface is an (abstract) class whose constructor acts as a factory function for one of its imple-
mentation subclasses. The implementation subclass as well as optional keyword arguments to its initializer can
be set globally at runtime with configure.

By using the constructor as the factory method, the interface looks like a normal class, isinstance works as
usual, etc. This pattern is most useful when the choice of implementation is likely to be a global decision (e.g.
when epoll is available, always use it instead of select), or when a previously-monolithic class has been
split into specialized subclasses.

Configurable subclasses must define the class methods configurable_base and
configurable_default, and use the instance method initialize instead of __init__.

96 Chapter 5. Utilities

http://python.readthedocs.io/en/latest/library/zlib.html#zlib.decompressobj
http://python.readthedocs.io/en/latest/library/functions.html#isinstance
http://python.readthedocs.io/en/latest/library/select.html#select.epoll
http://python.readthedocs.io/en/latest/library/select.html#select.select

Tornado Documentation, Release 3.1

classmethod configurable_base()
Returns the base class of a configurable hierarchy.

This will normally return the class in which it is defined. (which is not necessarily the same as the cls
classmethod parameter).

classmethod configurable_default()
Returns the implementation class to be used if none is configured.

initialize()
Initialize a Configurable subclass instance.

Configurable classes should use initialize instead of __init__.

classmethod configure(impl, **kwargs)
Sets the class to use when the base class is instantiated.

Keyword arguments will be saved and added to the arguments passed to the constructor. This can be used
to set global defaults for some parameters.

classmethod configured_class()
Returns the currently configured class.

class tornado.util.ArgReplacer(func, name)
Replaces one value in an args, kwargs pair.

Inspects the function signature to find an argument by name whether it is passed by position or keyword. For
use in decorators and similar wrappers.

replace(new_value, args, kwargs)
Replace the named argument in args, kwargs with new_value.

Returns (old_value, args, kwargs). The returned args and kwargs objects may not be the
same as the input objects, or the input objects may be mutated.

If the named argument was not found, new_value will be added to kwargs and None will be returned
as old_value.

5.9. tornado.util — General-purpose utilities 97

Tornado Documentation, Release 3.1

98 Chapter 5. Utilities

CHAPTER 6

Release notes

What’s new in Tornado 3.1

Jun 15, 2013

Multiple modules

• Many reference cycles have been broken up throughout the package, allowing for more efficient garbage collec-
tion on CPython.

• Silenced some log messages when connections are opened and immediately closed (i.e. port scans), or other
situations related to closed connections.

• Various small speedups: HTTPHeaders case normalization, UIModule proxy objects, precompile some
regexes.

tornado.auth

• OAuthMixin always sends oauth_version=1.0 in its request as required by the spec.

• FacebookGraphMixin now uses self._FACEBOOK_BASE_URL in facebook_request to allow the
base url to be overridden.

• The authenticate_redirect and authorize_redirect methods in the tornado.auth mixin
classes all now return Futures. These methods are asynchronous in OAuthMixin and derived classes, although
they do not take a callback. The Future these methods return must be yielded if they are called from a function
decorated with gen.coroutine (but not gen.engine).

• TwitterMixin now uses /account/verify_credentials to get information about the logged-in
user, which is more robust against changing screen names.

• The demos directory (in the source distribution) has a new twitter demo using TwitterMixin.

99

Tornado Documentation, Release 3.1

tornado.escape

• url_escape and url_unescape have a new plus argument (defaulting to True for consistency with the
previous behavior) which specifies whether they work like urllib.parse.unquote or urllib.parse.
unquote_plus.

tornado.gen

• Fixed a potential memory leak with long chains of tornado.gen coroutines.

tornado.httpclient

• tornado.httpclient.HTTPRequest takes a new argument auth_mode, which can be either basic
or digest. Digest authentication is only supported with tornado.curl_httpclient.

• tornado.curl_httpclient no longer goes into an infinite loop when pycurl returns a negative timeout.

• curl_httpclient now supports the PATCH and OPTIONS methods without the use of
allow_nonstandard_methods=True.

• Worked around a class of bugs in libcurl that would result in errors from IOLoop.update_handler in
various scenarios including digest authentication and socks proxies.

• The TCP_NODELAY flag is now set when appropriate in simple_httpclient.

• simple_httpclient no longer logs exceptions, since those exceptions are made available to the caller as
HTTPResponse.error.

tornado.httpserver

• tornado.httpserver.HTTPServer handles malformed HTTP headers more gracefully.

• HTTPServer now supports lists of IPs in X-Forwarded-For (it chooses the last, i.e. nearest one).

• Memory is now reclaimed promptly on CPython when an HTTP request fails because it exceeded the maximum
upload size.

• The TCP_NODELAY flag is now set when appropriate in HTTPServer.

• The HTTPServer no_keep_alive option is now respected with HTTP 1.0 connections that explicitly pass
Connection: keep-alive.

• The Connection: keep-alive check for HTTP 1.0 connections is now case-insensitive.

• The str and repr of tornado.httpserver.HTTPRequest no longer include the request body, reduc-
ing log spam on errors (and potential exposure/retention of private data).

tornado.httputil

• The cache used in HTTPHeaders will no longer grow without bound.

100 Chapter 6. Release notes

http://python.readthedocs.io/en/latest/library/urllib.parse.html#urllib.parse.unquote
http://python.readthedocs.io/en/latest/library/urllib.parse.html#urllib.parse.unquote_plus
http://python.readthedocs.io/en/latest/library/urllib.parse.html#urllib.parse.unquote_plus
http://python.readthedocs.io/en/latest/library/stdtypes.html#str
http://python.readthedocs.io/en/latest/library/functions.html#repr

Tornado Documentation, Release 3.1

tornado.ioloop

• Some IOLoop implementations (such as pyzmq) accept objects other than integer file descriptors;
these objects will now have their .close() method called when the IOLoop` is closed with
``all_fds=True.

• The stub handles left behind by IOLoop.remove_timeout will now get cleaned up instead of waiting to
expire.

tornado.iostream

• Fixed a bug in BaseIOStream.read_until_close that would sometimes cause data to be passed to the
final callback instead of the streaming callback.

• The IOStream close callback is now run more reliably if there is an exception in _try_inline_read.

• New method BaseIOStream.set_nodelay can be used to set the TCP_NODELAY flag.

• Fixed a case where errors in SSLIOStream.connect (and SimpleAsyncHTTPClient) were not being
reported correctly.

tornado.locale

• Locale.format_date now works on Python 3.

tornado.netutil

• The default Resolver implementation now works on Solaris.

• Resolver now has a close method.

• Fixed a potential CPU DoS when tornado.netutil.ssl_match_hostname is used on certificates with
an abusive wildcard pattern.

• All instances of ThreadedResolver now share a single thread pool, whose size is set by the first one to be
created (or the static Resolver.configure method).

• ExecutorResolver is now documented for public use.

• bind_sockets now works in configurations with incomplete IPv6 support.

tornado.options

• tornado.options.define with multiple=True now works on Python 3.

• tornado.options.options and other OptionParser instances support some new dict-like methods:
items(), iteration over keys, and (read-only) access to options with square braket syntax. OptionParser.
group_dict returns all options with a given group name, and OptionParser.as_dict returns all op-
tions.

tornado.process

• tornado.process.Subprocess no longer leaks file descriptors into the child process, which fixes a
problem in which the child could not detect that the parent process had closed its stdin pipe.

6.1. What’s new in Tornado 3.1 101

Tornado Documentation, Release 3.1

• Subprocess.set_exit_callback now works for subprocesses created without an explicit io_loop
parameter.

tornado.stack_context

• tornado.stack_context has been rewritten and is now much faster.

• New function run_with_stack_context facilitates the use of stack contexts with coroutines.

tornado.tcpserver

• The constructors of TCPServer and HTTPServer now take a max_buffer_size keyword argument.

tornado.template

• Some internal names used by the template system have been changed; now all “reserved” names in templates
start with _tt_.

tornado.testing

• tornado.testing.AsyncTestCase.wait now raises the correct exception when it has been modified
by tornado.stack_context.

• tornado.testing.gen_test can now be called as @gen_test(timeout=60) to give some tests a
longer timeout than others.

• The environment variable ASYNC_TEST_TIMEOUT can now be set to override the default timeout for
AsyncTestCase.wait and gen_test.

• bind_unused_port now passes None instead of 0 as the port to getaddrinfo, which works better with
some unusual network configurations.

tornado.util

• tornado.util.import_object now works with top-level module names that do not contain a dot.

• tornado.util.import_object now consistently raises ImportError instead of AttributeError
when it fails.

tornado.web

• The handlers list passed to the tornado.web.Application constructor and add_handlers meth-
ods can now contain lists in addition to tuples and URLSpec objects.

• tornado.web.StaticFileHandler now works on Windows when the client passes an
If-Modified-Since timestamp before 1970.

• New method RequestHandler.log_exception can be overridden to customize the logging behavior
when an exception is uncaught. Most apps that currently override _handle_request_exception can
now use a combination of RequestHandler.log_exception and write_error.

• RequestHandler.get_argument now raises MissingArgumentError (a subclass of tornado.
web.HTTPError, which is what it raised previously) if the argument cannot be found.

102 Chapter 6. Release notes

http://python.readthedocs.io/en/latest/library/exceptions.html#ImportError
http://python.readthedocs.io/en/latest/library/exceptions.html#AttributeError

Tornado Documentation, Release 3.1

• Application.reverse_url now uses url_escape with plus=False, i.e. spaces are encoded as
%20 instead of +.

• Arguments extracted from the url path are now decoded with url_unescape with plus=False, so plus
signs are left as-is instead of being turned into spaces.

• RequestHandler.send_error will now only be called once per request, even if multiple exceptions are
caught by the stack context.

• The tornado.web.asynchronous decorator is no longer necessary for methods that return a Future
(i.e. those that use the gen.coroutine or return_future decorators)

• RequestHandler.prepare may now be asynchronous if it returns a Future. The asynchronous
decorator is not used with prepare; one of the Future-related decorators should be used instead.

• RequestHandler.current_user may now be assigned to normally.

• RequestHandler.redirect no longer silently strips control characters and whitespace. It is now an error
to pass control characters, newlines or tabs.

• StaticFileHandler has been reorganized internally and now has additional extension points that can be
overridden in subclasses.

• StaticFileHandler now supports HTTP Range requests. StaticFileHandler is still not suitable
for files too large to comfortably fit in memory, but Range support is necessary in some browsers to enable
seeking of HTML5 audio and video.

• StaticFileHandler now uses longer hashes by default, and uses the same hashes for Etag as it does for
versioned urls.

• StaticFileHandler.make_static_url and RequestHandler.static_url now have an addi-
tional keyword argument include_version to suppress the url versioning.

• StaticFileHandler now reads its file in chunks, which will reduce memory fragmentation.

• Fixed a problem with the Date header and cookie expiration dates when the system locale is set to a non-english
configuration.

tornado.websocket

• WebSocketHandler now catches StreamClosedError and runs on_close immediately instead of
logging a stack trace.

• New method WebSocketHandler.set_nodelay can be used to set the TCP_NODELAY flag.

tornado.wsgi

• Fixed an exception in WSGIContainer when the connection is closed while output is being written.

What’s new in Tornado 3.0.2

Jun 2, 2013

• tornado.auth.TwitterMixin now defaults to version 1.1 of the Twitter API, instead of version 1.0
which is being discontinued on June 11. It also now uses HTTPS when talking to Twitter.

• Fixed a potential memory leak with a long chain of gen.coroutine or gen.engine functions.

6.2. What’s new in Tornado 3.0.2 103

https://dev.twitter.com/calendar

Tornado Documentation, Release 3.1

What’s new in Tornado 3.0.1

Apr 8, 2013

• The interface of tornado.auth.FacebookGraphMixin is now consistent with its documentation and
the rest of the module. The get_authenticated_user and facebook_request methods return a
Future and the callback argument is optional.

• The tornado.testing.gen_test decorator will no longer be recognized as a (broken) test by nose.

• Work around a bug in Ubuntu 13.04 betas involving an incomplete backport of the ssl.match_hostname
function.

• tornado.websocket.websocket_connect now fails cleanly when it attempts to connect to a non-
websocket url.

• tornado.testing.LogTrapTestCase once again works with byte strings on Python 2.

• The request attribute of tornado.httpclient.HTTPResponse is now always an HTTPRequest,
never a _RequestProxy.

• Exceptions raised by the tornado.gen module now have better messages when tuples are used as callback
keys.

What’s new in Tornado 3.0

Mar 29, 2013

Highlights

• The callback argument to many asynchronous methods is now optional, and these methods return a Future.
The tornado.gen module now understands Futures, and these methods can be used directly without a
gen.Task wrapper.

• New function IOLoop.current returns the IOLoop that is running on the current thread (as opposed to
IOLoop.instance, which returns a specific thread’s (usually the main thread’s) IOLoop.

• New class tornado.netutil.Resolver provides an asynchronous interface to DNS resolution. The
default implementation is still blocking, but non-blocking implementations are available using one of three
optional dependencies: ThreadedResolver using the concurrent.futures thread pool, tornado.
platform.caresresolver.CaresResolver using the pycares library, or tornado.platform.
twisted.TwistedResolver using twisted

• Tornado’s logging is now less noisy, and it no longer goes directly to the root logger, allowing for finer-grained
configuration.

• New class tornado.process.Subprocess wraps subprocess.Popen with PipeIOStream access
to the child’s file descriptors.

• IOLoop now has a static configure method like the one on AsyncHTTPClient, which can be used to
select an IOLoop implementation other than the default.

• IOLoop can now optionally use a monotonic clock if available (see below for more details).

104 Chapter 6. Release notes

http://python.readthedocs.io/en/latest/library/ssl.html#ssl.match_hostname
http://python.readthedocs.io/en/latest/library/concurrent.futures.html#module-concurrent.futures
http://python.readthedocs.io/en/latest/library/subprocess.html#subprocess.Popen

Tornado Documentation, Release 3.1

Backwards-incompatible changes

• Python 2.5 is no longer supported. Python 3 is now supported in a single codebase instead of using 2to3

• The tornado.database module has been removed. It is now available as a separate package, torndb

• Functions that take an io_loop parameter now default to IOLoop.current() instead of IOLoop.
instance().

• Empty HTTP request arguments are no longer ignored. This applies to HTTPRequest.arguments and
RequestHandler.get_argument[s] in WSGI and non-WSGI modes.

• On Python 3, tornado.escape.json_encode no longer accepts byte strings.

• On Python 3, the get_authenticated_user methods in tornado.auth now return character strings
instead of byte strings.

• tornado.netutil.TCPServer has moved to its own module, tornado.tcpserver.

• The Tornado test suite now requires unittest2 when run on Python 2.6.

• tornado.options.options is no longer a subclass of dict; attribute-style access is now required.

Detailed changes by module

Multiple modules

• Tornado no longer logs to the root logger. Details on the new logging scheme can be found under the tornado.
log module. Note that in some cases this will require that you add an explicit logging configuration in order
to see any output (perhaps just calling logging.basicConfig()), although both IOLoop.start() and
tornado.options.parse_command_line will do this for you.

• On python 3.2+, methods that take an ssl_options argument (on SSLIOStream, TCPServer, and
HTTPServer) now accept either a dictionary of options or an ssl.SSLContext object.

• New optional dependency on concurrent.futures to provide better support for working with threads.
concurrent.futures is in the standard library for Python 3.2+, and can be installed on older versions with
pip install futures.

tornado.autoreload

• tornado.autoreload is now more reliable when there are errors at import time.

• Calling tornado.autoreload.start (or creating an Application with debug=True) twice on the
same IOLoop now does nothing (instead of creating multiple periodic callbacks). Starting autoreload on more
than one IOLoop in the same process now logs a warning.

• Scripts run by autoreload no longer inherit __future__ imports used by Tornado.

tornado.auth

• On Python 3, the get_authenticated_user method family now returns character strings instead of byte
strings.

• Asynchronous methods defined in tornado.auth now return a Future, and their callback argument is
optional. The Future interface is preferred as it offers better error handling (the previous interface just logged
a warning and returned None).

6.4. What’s new in Tornado 3.0 105

https://github.com/bdarnell/torndb
http://python.readthedocs.io/en/latest/library/stdtypes.html#dict
http://python.readthedocs.io/en/latest/library/ssl.html#ssl.SSLContext
http://python.readthedocs.io/en/latest/library/concurrent.futures.html#module-concurrent.futures
http://python.readthedocs.io/en/latest/library/concurrent.futures.html#module-concurrent.futures

Tornado Documentation, Release 3.1

• The tornado.auth mixin classes now define a method get_auth_http_client, which can be overrid-
den to use a non-default AsyncHTTPClient instance (e.g. to use a different IOLoop)

• Subclasses of OAuthMixin are encouraged to override OAuthMixin._oauth_get_user_future in-
stead of _oauth_get_user, although both methods are still supported.

tornado.concurrent

• New module tornado.concurrent contains code to support working with concurrent.futures, or
to emulate future-based interface when that module is not available.

tornado.curl_httpclient

• Preliminary support for tornado.curl_httpclient on Python 3. The latest official release of pycurl only
supports Python 2, but Ubuntu has a port available in 12.10 (apt-get install python3-pycurl). This
port currently has bugs that prevent it from handling arbitrary binary data but it should work for textual (utf8)
resources.

• Fix a crash with libcurl 7.29.0 if a curl object is created and closed without being used.

tornado.escape

• On Python 3, json_encode no longer accepts byte strings. This mirrors the behavior of the underlying json
module. Python 2 behavior is unchanged but should be faster.

tornado.gen

• New decorator @gen.coroutine is available as an alternative to @gen.engine. It automatically re-
turns a Future, and within the function instead of calling a callback you return a value with raise gen.
Return(value) (or simply return value in Python 3.3).

• Generators may now yield Future objects.

• Callbacks produced by gen.Callback and gen.Task are now automatically stack-context-wrapped, to
minimize the risk of context leaks when used with asynchronous functions that don’t do their own wrapping.

• Fixed a memory leak involving generators, RequestHandler.flush, and clients closing connections while
output is being written.

• Yielding a large list no longer has quadratic performance.

tornado.httpclient

• AsyncHTTPClient.fetch now returns a Future and its callback argument is optional. When the future
interface is used, any error will be raised automatically, as if HTTPResponse.rethrow was called.

• AsyncHTTPClient.configure and all AsyncHTTPClient constructors now take a defaults key-
word argument. This argument should be a dictionary, and its values will be used in place of corresponding
attributes of HTTPRequest that are not set.

• All unset attributes of tornado.httpclient.HTTPRequest are now None. The default values of
some attributes (connect_timeout, request_timeout, follow_redirects, max_redirects,

106 Chapter 6. Release notes

http://python.readthedocs.io/en/latest/library/concurrent.futures.html#module-concurrent.futures

Tornado Documentation, Release 3.1

use_gzip, proxy_password, allow_nonstandard_methods, and validate_cert have been
moved from HTTPRequest to the client implementations.

• The max_clients argument to AsyncHTTPClient is now a keyword-only argument.

• Keyword arguments to AsyncHTTPClient.configure are no longer used when instantiating an imple-
mentation subclass directly.

• Secondary AsyncHTTPClient callbacks (streaming_callback, header_callback, and
prepare_curl_callback) now respect StackContext.

tornado.httpserver

• HTTPServer no longer logs an error when it is unable to read a second request from an HTTP 1.1 keep-alive
connection.

• HTTPServer now takes a protocol keyword argument which can be set to https if the server is behind
an SSL-decoding proxy that does not set any supported X-headers.

• tornado.httpserver.HTTPConnection now has a set_close_callback method that should be
used instead of reaching into its stream attribute.

• Empty HTTP request arguments are no longer ignored. This applies to HTTPRequest.arguments and
RequestHandler.get_argument[s] in WSGI and non-WSGI modes.

tornado.ioloop

• New function IOLoop.current returns the IOLoop that is running on the current thread (as opposed to
IOLoop.instance, which returns a specific thread’s (usually the main thread’s) IOLoop).

• New method IOLoop.add_future to run a callback on the IOLoop when an asynchronous Future fin-
ishes.

• IOLoop now has a static configure method like the one on AsyncHTTPClient, which can be used to
select an IOLoop implementation other than the default.

• The IOLoop poller implementations (select, epoll, kqueue) are now available as distinct subclasses of
IOLoop. Instantiating IOLoop will continue to automatically choose the best available implementation.

• The IOLoop constructor has a new keyword argument time_func, which can be used to set the time function
used when scheduling callbacks. This is most useful with the time.monotonic function, introduced in
Python 3.3 and backported to older versions via the monotime module. Using a monotonic clock here avoids
problems when the system clock is changed.

• New function IOLoop.time returns the current time according to the IOLoop. To use the new monotonic
clock functionality, all calls to IOLoop.add_timeout must be either pass a datetime.timedelta or
a time relative to IOLoop.time, not time.time. (time.time will continue to work only as long as the
IOLoop’s time_func argument is not used).

• New convenience method IOLoop.run_sync can be used to start an IOLoop just long enough to run a single
coroutine.

• New method IOLoop.add_callback_from_signal is safe to use in a signal handler (the regular
add_callback method may deadlock).

• IOLoop now uses signal.set_wakeup_fd where available (Python 2.6+ on Unix) to avoid a race condi-
tion that could result in Python signal handlers being delayed.

• Method IOLoop.running() has been removed.

6.4. What’s new in Tornado 3.0 107

http://python.readthedocs.io/en/latest/library/time.html#time.monotonic
http://python.readthedocs.io/en/latest/library/datetime.html#datetime.timedelta
http://python.readthedocs.io/en/latest/library/time.html#time.time
http://python.readthedocs.io/en/latest/library/time.html#time.time
http://python.readthedocs.io/en/latest/library/signal.html#signal.set_wakeup_fd

Tornado Documentation, Release 3.1

• IOLoop has been refactored to better support subclassing.

• IOLoop.add_callback and add_callback_from_signal now take *args, **kwargs to pass
along to the callback.

tornado.iostream

• IOStream.connect now has an optional server_hostname argument which will be used for SSL cer-
tificate validation when applicable. Additionally, when supported (on Python 3.2+), this hostname will be sent
via SNI (and this is supported by tornado.simple_httpclient)

• Much of IOStream has been refactored into a separate class BaseIOStream.

• New class tornado.iostream.PipeIOStream provides the IOStream interface on pipe file descriptors.

• IOStream now raises a new exception tornado.iostream.StreamClosedError when you attempt
to read or write after the stream has been closed (by either side).

• IOStream now simply closes the connection when it gets an ECONNRESET error, rather than logging it as an
error.

• IOStream.error no longer picks up unrelated exceptions.

• BaseIOStream.close now has an exc_info argument (similar to the one used in the logging module)
that can be used to set the stream’s error attribute when closing it.

• BaseIOStream.read_until_close now works correctly when it is called while there is buffered data.

• Fixed a major performance regression when run on PyPy (introduced in Tornado 2.3).

tornado.log

• New module containing enable_pretty_logging and LogFormatter, moved from the options mod-
ule.

• LogFormatter now handles non-ascii data in messages and tracebacks better.

tornado.netutil

• New class tornado.netutil.Resolver provides an asynchronous interface to DNS resolution. The
default implementation is still blocking, but non-blocking implementations are available using one of three
optional dependencies: ThreadedResolver using the concurrent.futures thread pool, tornado.
platform.caresresolver.CaresResolver using the pycares library, or tornado.platform.
twisted.TwistedResolver using twisted

• New function tornado.netutil.is_valid_ip returns true if a given string is a valid IP (v4 or v6)
address.

• tornado.netutil.bind_sockets has a new flags argument that can be used to pass additional flags
to getaddrinfo.

• tornado.netutil.bind_sockets no longer sets AI_ADDRCONFIG; this will cause it to bind to both
ipv4 and ipv6 more often than before.

• tornado.netutil.bind_sockets now works when Python was compiled with --disable-ipv6 but
IPv6 DNS resolution is available on the system.

• tornado.netutil.TCPServer has moved to its own module, tornado.tcpserver.

108 Chapter 6. Release notes

http://python.readthedocs.io/en/latest/library/logging.html#module-logging
http://python.readthedocs.io/en/latest/library/concurrent.futures.html#module-concurrent.futures

Tornado Documentation, Release 3.1

tornado.options

• The class underlying the functions in tornado.options is now public (tornado.options.
OptionParser). This can be used to create multiple independent option sets, such as for subcommands.

• tornado.options.parse_config_file now configures logging automatically by default, in the same
way that parse_command_line does.

• New function tornado.options.add_parse_callback schedules a callback to be run after the com-
mand line or config file has been parsed. The keyword argument final=False can be used on either parsing
function to supress these callbacks.

• tornado.options.define now takes a callback argument. This callback will be run with the new
value whenever the option is changed. This is especially useful for options that set other options, such as by
reading from a config file.

• tornado.options.parse_command_line --help output now goes to stderr rather than stdout.

• tornado.options.options is no longer a subclass of dict; attribute-style access is now required.

• tornado.options.options (and OptionParser instances generally) now have a mockable()
method that returns a wrapper object compatible with mock.patch.

• Function tornado.options.enable_pretty_logging has been moved to the tornado.log mod-
ule.

tornado.platform.caresresolver

• New module containing an asynchronous implementation of the Resolver interface, using the pycares
library.

tornado.platform.twisted

• New class tornado.platform.twisted.TwistedIOLoop allows Tornado code to be run on the
Twisted reactor (as opposed to the existing TornadoReactor, which bridges the gap in the other direction).

• New class tornado.platform.twisted.TwistedResolver is an asynchronous implementation of
the Resolver interface.

tornado.process

• New class tornado.process.Subprocess wraps subprocess.Popen with PipeIOStream access
to the child’s file descriptors.

tornado.simple_httpclient

• SimpleAsyncHTTPClient now takes a resolver keyword argument (which may be passed to either the
constructor or configure), to allow it to use the new non-blocking tornado.netutil.Resolver.

• When following redirects, SimpleAsyncHTTPClient now treats a 302 response code the same as a 303.
This is contrary to the HTTP spec but consistent with all browsers and other major HTTP clients (including
CurlAsyncHTTPClient).

6.4. What’s new in Tornado 3.0 109

http://python.readthedocs.io/en/latest/library/stdtypes.html#dict
http://python.readthedocs.io/en/latest/library/unittest.mock.html#unittest.mock.patch
http://python.readthedocs.io/en/latest/library/subprocess.html#subprocess.Popen

Tornado Documentation, Release 3.1

• The behavior of header_callback with SimpleAsyncHTTPClient has changed and is now the same
as that of CurlAsyncHTTPClient. The header callback now receives the first line of the response (e.g.
HTTP/1.0 200 OK) and the final empty line.

• tornado.simple_httpclient now accepts responses with a 304 status code that include a
Content-Length header.

• Fixed a bug in which SimpleAsyncHTTPClient callbacks were being run in the client’s
stack_context.

tornado.stack_context

• stack_context.wrap now runs the wrapped callback in a more consistent environment by recreating con-
texts even if they already exist on the stack.

• Fixed a bug in which stack contexts could leak from one callback chain to another.

• Yield statements inside a with statement can cause stack contexts to become inconsistent; an exception will
now be raised when this case is detected.

tornado.template

• Errors while rendering templates no longer log the generated code, since the enhanced stack traces (from version
2.1) should make this unnecessary.

• The {% apply %} directive now works properly with functions that return both unicode strings and byte
strings (previously only byte strings were supported).

• Code in templates is no longer affected by Tornado’s __future__ imports (which previously included
absolute_import and division).

tornado.testing

• New function tornado.testing.bind_unused_port both chooses a port and binds a socket to it, so
there is no risk of another process using the same port. get_unused_port is now deprecated.

• New decorator tornado.testing.gen_test can be used to allow for yielding tornado.gen objects
in tests, as an alternative to the stop and wait methods of AsyncTestCase.

• tornado.testing.AsyncTestCase and friends now extend unittest2.TestCase when it is avail-
able (and continue to use the standard unittest module when unittest2 is not available)

• tornado.testing.ExpectLog can be used as a finer-grained alternative to tornado.testing.
LogTrapTestCase

• The command-line interface to tornado.testing.main now supports additional arguments from the un-
derlying unittest module: verbose, quiet, failfast, catch, buffer.

• The deprecated --autoreload option of tornado.testing.main has been removed. Use python
-m tornado.autoreload as a prefix command instead.

• The --httpclient option of tornado.testing.main has been moved to tornado.test.
runtests so as not to pollute the application option namespace. The tornado.options module’s new
callback support now makes it easy to add options from a wrapper script instead of putting all possible options
in tornado.testing.main.

110 Chapter 6. Release notes

http://python.readthedocs.io/en/latest/library/unittest.html#module-unittest

Tornado Documentation, Release 3.1

• AsyncHTTPTestCase no longer calls AsyncHTTPClient.close for tests that use the singleton
IOLoop.instance.

• LogTrapTestCase no longer fails when run in unknown logging configurations. This allows tests to be run
under nose, which does its own log buffering (LogTrapTestCase doesn’t do anything useful in this case, but
at least it doesn’t break things any more).

tornado.util

• tornado.util.b (which was only intended for internal use) is gone.

tornado.web

• RequestHandler.set_header now overwrites previous header values case-insensitively.

• tornado.web.RequestHandler has new attributes path_args and path_kwargs, which contain the
positional and keyword arguments that are passed to the get/post/etc method. These attributes are set before
those methods are called, so they are available during prepare()

• tornado.web.ErrorHandler no longer requires XSRF tokens on POST requests, so posts to an unknown
url will always return 404 instead of complaining about XSRF tokens.

• Several methods related to HTTP status codes now take a reason keyword argument to specify an alternate
“reason” string (i.e. the “Not Found” in “HTTP/1.1 404 Not Found”). It is now possible to set status codes other
than those defined in the spec, as long as a reason string is given.

• The Date HTTP header is now set by default on all responses.

• Etag/If-None-Match requests now work with StaticFileHandler.

• StaticFileHandler no longer sets Cache-Control: public unnecessarily.

• When gzip is enabled in a tornado.web.Application, appropriate Vary: Accept-Encoding
headers are now sent.

• It is no longer necessary to pass all handlers for a host in a single Application.add_handlers call. Now
the request will be matched against the handlers for any host_pattern that includes the request’s Host
header.

tornado.websocket

• Client-side WebSocket support is now available: tornado.websocket.websocket_connect

• WebSocketHandler has new methods ping and on_pong to send pings to the browser (not supported on
the draft76 protocol)

What’s new in Tornado 2.4.1

Nov 24, 2012

Bug fixes

• Fixed a memory leak in tornado.stack_context that was especially likely with long-running @gen.
engine functions.

6.5. What’s new in Tornado 2.4.1 111

Tornado Documentation, Release 3.1

• tornado.auth.TwitterMixin now works on Python 3.

• Fixed a bug in which IOStream.read_until_close with a streaming callback would sometimes pass the
last chunk of data to the final callback instead of the streaming callback.

What’s new in Tornado 2.4

Sep 4, 2012

General

• Fixed Python 3 bugs in tornado.auth, tornado.locale, and tornado.wsgi.

HTTP clients

• Removed max_simultaneous_connections argument from tornado.httpclient (both imple-
mentations). This argument hasn’t been useful for some time (if you were using it you probably want
max_clients instead)

• tornado.simple_httpclient now accepts and ignores HTTP 1xx status responses.

tornado.ioloop and tornado.iostream

• Fixed a bug introduced in 2.3 that would cause IOStream close callbacks to not run if there were pending
reads.

• Improved error handling in SSLIOStream and SSL-enabled TCPServer.

• SSLIOStream.get_ssl_certificate now has a binary_form argument which is passed to
SSLSocket.getpeercert.

• SSLIOStream.write can now be called while the connection is in progress, same as non-SSL IOStream
(but be careful not to send sensitive data until the connection has completed and the certificate has been verified).

• IOLoop.add_handler cannot be called more than once with the same file descriptor. This was always true
for epoll, but now the other implementations enforce it too.

• On Windows, TCPServer uses SO_EXCLUSIVEADDRUSER instead of SO_REUSEADDR.

tornado.template

• {% break %} and {% continue %} can now be used looping constructs in templates.

• It is no longer an error for an if/else/for/etc block in a template to have an empty body.

tornado.testing

• New class tornado.testing.AsyncHTTPSTestCase is like AsyncHTTPTestCase. but enables SSL
for the testing server (by default using a self-signed testing certificate).

• tornado.testing.main now accepts additional keyword arguments and forwards them to unittest.
main.

112 Chapter 6. Release notes

http://python.readthedocs.io/en/latest/library/unittest.html#unittest.main
http://python.readthedocs.io/en/latest/library/unittest.html#unittest.main

Tornado Documentation, Release 3.1

tornado.web

• New method RequestHandler.get_template_namespace can be overridden to add additional vari-
ables without modifying keyword arguments to render_string.

• RequestHandler.add_header now works with WSGIApplication.

• RequestHandler.get_secure_cookie now handles a potential error case.

• RequestHandler.__init__ now calls super().__init__ to ensure that all constructors are called
when multiple inheritance is used.

• Docs have been updated with a description of all available Application settings

Other modules

• OAuthMixin now accepts "oob" as a callback_uri.

• OpenIdMixin now also returns the claimed_id field for the user.

• tornado.platform.twisted shutdown sequence is now more compatible.

• The logging configuration used in tornado.options is now more tolerant of non-ascii byte strings.

What’s new in Tornado 2.3

May 31, 2012

HTTP clients

• tornado.httpclient.HTTPClient now supports the same constructor keyword arguments as
AsyncHTTPClient.

• The max_clients keyword argument to AsyncHTTPClient.configure now works.

• tornado.simple_httpclient now supports the OPTIONS and PATCH HTTP methods.

• tornado.simple_httpclient is better about closing its sockets instead of leaving them for garbage
collection.

• tornado.simple_httpclient correctly verifies SSL certificates for URLs containing IPv6 literals (This
bug affected Python 2.5 and 2.6).

• tornado.simple_httpclient no longer includes basic auth credentials in the Host header when those
credentials are extracted from the URL.

• tornado.simple_httpclient no longer modifies the caller-supplied header dictionary, which caused
problems when following redirects.

• tornado.curl_httpclient now supports client SSL certificates (using the same client_cert and
client_key arguments as tornado.simple_httpclient)

HTTP Server

• HTTPServer now works correctly with paths starting with //

• HTTPHeaders.copy (inherited from dict.copy) now works correctly.

6.7. What’s new in Tornado 2.3 113

http://python.readthedocs.io/en/latest/library/stdtypes.html#dict.copy

Tornado Documentation, Release 3.1

• HTTPConnection.address is now always the socket address, even for non-IP sockets. HTTPRequest.
remote_ip is still always an IP-style address (fake data is used for non-IP sockets)

• Extra data at the end of multipart form bodies is now ignored, which fixes a compatibility problem with an iOS
HTTP client library.

IOLoop and IOStream

• IOStream now has an error attribute that can be used to determine why a socket was closed.

• tornado.iostream.IOStream.read_until and read_until_regex are much faster with large
input.

• IOStream.write performs better when given very large strings.

• IOLoop.instance() is now thread-safe.

tornado.options

• tornado.options options with multiple=True that are set more than once now overwrite
rather than append. This makes it possible to override values set in parse_config_file with
parse_command_line.

• tornado.options --help output is now prettier.

• tornado.options.options now supports attribute assignment.

tornado.template

• Template files containing non-ASCII (utf8) characters now work on Python 3 regardless of the locale environ-
ment variables.

• Templates now support else clauses in try/except/finally/else blocks.

tornado.web

• tornado.web.RequestHandler now supports the PATCH HTTP method. Note that this means any ex-
isting methods named patch in RequestHandler subclasses will need to be renamed.

• tornado.web.addslash and removeslash decorators now send permanent redirects (301) instead of
temporary (302).

• RequestHandler.flush now invokes its callback whether there was any data to flush or not.

• Repeated calls to RequestHandler.set_cookie with the same name now overwrite the previous cookie
instead of producing additional copies.

• tornado.web.OutputTransform.transform_first_chunk now takes and returns a status code
in addition to the headers and chunk. This is a backwards-incompatible change to an interface that was never
technically private, but was not included in the documentation and does not appear to have been used outside
Tornado itself.

• Fixed a bug on python versions before 2.6.5 when URLSpec regexes are constructed from unicode strings and
keyword arguments are extracted.

• The reverse_url function in the template namespace now comes from the RequestHandler rather
than the Application. (Unless overridden, RequestHandler.reverse_url is just an alias for the
Application method).

114 Chapter 6. Release notes

Tornado Documentation, Release 3.1

• The Etag header is now returned on 304 responses to an If-None-Match request, improving compatibility
with some caches.

• tornado.web will no longer produce responses with status code 304 that also have entity headers such as
Content-Length.

Other modules

• tornado.auth.FacebookGraphMixin no longer sends post_args redundantly in the url.

• The extra_params argument to tornado.escape.linkify may now be a callable, to allow parameters
to be chosen separately for each link.

• tornado.gen no longer leaks StackContexts when a @gen.engine wrapped function is called repeat-
edly.

• tornado.locale.get_supported_locales no longer takes a meaningless cls argument.

• StackContext instances now have a deactivation callback that can be used to prevent further propagation.

• tornado.testing.AsyncTestCase.wait now resets its timeout on each call.

• tornado.wsgi.WSGIApplication now parses arguments correctly on Python 3.

• Exception handling on Python 3 has been improved; previously some exceptions such as
UnicodeDecodeError would generate TypeErrors

What’s new in Tornado 2.2.1

Apr 23, 2012

Security fixes

• tornado.web.RequestHandler.set_header now properly sanitizes input values to protect against
header injection, response splitting, etc. (it has always attempted to do this, but the check was incorrect). Note
that redirects, the most likely source of such bugs, are protected by a separate check in RequestHandler.
redirect.

Bug fixes

• Colored logging configuration in tornado.options is compatible with Python 3.2.3 (and 3.3).

What’s new in Tornado 2.2

Jan 30, 2012

Highlights

• Updated and expanded WebSocket support.

• Improved compatibility in the Twisted/Tornado bridge.

• Template errors now generate better stack traces.

6.8. What’s new in Tornado 2.2.1 115

http://python.readthedocs.io/en/latest/library/exceptions.html#UnicodeDecodeError

Tornado Documentation, Release 3.1

• Better exception handling in tornado.gen.

Security fixes

• tornado.simple_httpclient now disables SSLv2 in all cases. Previously SSLv2 would be allowed if
the Python interpreter was linked against a pre-1.0 version of OpenSSL.

Backwards-incompatible changes

• tornado.process.fork_processes now raises SystemExit if all child processes exit cleanly rather
than returning None. The old behavior was surprising and inconsistent with most of the documented examples
of this function (which did not check the return value).

• On Python 2.6, tornado.simple_httpclient only supports SSLv3. This is because Python 2.6 does not
expose a way to support both SSLv3 and TLSv1 without also supporting the insecure SSLv2.

• tornado.websocket no longer supports the older “draft 76” version of the websocket protocol by de-
fault, although this version can be enabled by overriding tornado.websocket.WebSocketHandler.
allow_draft76.

tornado.httpclient

• SimpleAsyncHTTPClient no longer hangs on HEAD requests, responses with no content, or empty
POST/PUT response bodies.

• SimpleAsyncHTTPClient now supports 303 and 307 redirect codes.

• tornado.curl_httpclient now accepts non-integer timeouts.

• tornado.curl_httpclient now supports basic authentication with an empty password.

tornado.httpserver

• HTTPServer with xheaders=True will no longer accept X-Real-IP headers that don’t look like valid
IP addresses.

• HTTPServer now treats the Connection request header as case-insensitive.

tornado.ioloop and tornado.iostream

• IOStream.write now works correctly when given an empty string.

• IOStream.read_until (and read_until_regex) now perform better when there is a lot of buffered
data, which improves peformance of SimpleAsyncHTTPClient when downloading files with lots of
chunks.

• SSLIOStream now works correctly when ssl_version is set to a value other than SSLv23.

• Idle IOLoops no longer wake up several times a second.

• tornado.ioloop.PeriodicCallback no longer triggers duplicate callbacks when stopped and started
repeatedly.

116 Chapter 6. Release notes

http://python.readthedocs.io/en/latest/library/exceptions.html#SystemExit

Tornado Documentation, Release 3.1

tornado.template

• Exceptions in template code will now show better stack traces that reference lines from the original template
file.

• {# and #} can now be used for comments (and unlike the old {% comment %} directive, these can wrap
other template directives).

• Template directives may now span multiple lines.

tornado.web

• Now behaves better when given malformed Cookie headers

• RequestHandler.redirect now has a status argument to send status codes other than 301 and 302.

• New method RequestHandler.on_finish may be overridden for post-request processing (as a counter-
part to RequestHandler.prepare)

• StaticFileHandler now outputs Content-Length and Etag headers on HEAD requests.

• StaticFileHandler now has overridable get_version and parse_url_path methods for use in
subclasses.

• RequestHandler.static_url now takes an include_host parameter (in addition to the old support
for the RequestHandler.include_host attribute).

tornado.websocket

• Updated to support the latest version of the protocol, as finalized in RFC 6455.

• Many bugs were fixed in all supported protocol versions.

• tornado.websocket no longer supports the older “draft 76” version of the websocket protocol by de-
fault, although this version can be enabled by overriding tornado.websocket.WebSocketHandler.
allow_draft76.

• WebSocketHandler.write_message now accepts a binary argument to send binary messages.

• Subprotocols (i.e. the Sec-WebSocket-Protocol header) are now supported; see the
WebSocketHandler.select_subprotocol method for details.

• WebSocketHandler.get_websocket_scheme can be used to select the appropriate url scheme (ws:/
/ or wss://) in cases where HTTPRequest.protocol is not set correctly.

Other modules

• tornado.auth.TwitterMixin.authenticate_redirect now takes a callback_uri parame-
ter.

• tornado.auth.TwitterMixin.twitter_request now accepts both URLs and partial paths (com-
plete URLs are useful for the search API which follows different patterns).

• Exception handling in tornado.gen has been improved. It is now possible to catch exceptions thrown by a
Task.

• tornado.netutil.bind_sockets now works when getaddrinfo returns duplicate addresses.

• tornado.platform.twisted compatibility has been significantly improved. Twisted version 11.1.0 is
now supported in addition to 11.0.0.

6.9. What’s new in Tornado 2.2 117

Tornado Documentation, Release 3.1

• tornado.process.fork_processes correctly reseeds the random module even when os.urandom
is not implemented.

• tornado.testing.main supports a new flag --exception_on_interrupt, which can be set to false
to make Ctrl-C kill the process more reliably (at the expense of stack traces when it does so).

• tornado.version_info is now a four-tuple so official releases can be distinguished from development
branches.

What’s new in Tornado 2.1.1

Oct 4, 2011

Bug fixes

• Fixed handling of closed connections with the epoll (i.e. Linux) IOLoop. Previously, closed con-
nections could be shut down too early, which most often manifested as “Stream is closed” exceptions in
SimpleAsyncHTTPClient.

• Fixed a case in which chunked responses could be closed prematurely, leading to truncated output.

• IOStream.connect now reports errors more consistently via logging and the close callback (this affects e.g.
connections to localhost on FreeBSD).

• IOStream.read_bytes again accepts both int and long arguments.

• PeriodicCallback no longer runs repeatedly when IOLoop iterations complete faster than the resolution
of time.time() (mainly a problem on Windows).

Backwards-compatibility note

• Listening for IOLoop.ERROR alone is no longer sufficient for detecting closed connections on an otherwise
unused socket. IOLoop.ERROR must always be used in combination with READ or WRITE.

What’s new in Tornado 2.1

Sep 20, 2011

Backwards-incompatible changes

• Support for secure cookies written by pre-1.0 releases of Tornado has been removed. The RequestHandler.
get_secure_cookie method no longer takes an include_name parameter.

• The debug application setting now causes stack traces to be displayed in the browser on uncaught exceptions.
Since this may leak sensitive information, debug mode is not recommended for public-facing servers.

Security fixes

• Diginotar has been removed from the default CA certificates file used by SimpleAsyncHTTPClient.

118 Chapter 6. Release notes

http://python.readthedocs.io/en/latest/library/random.html#module-random
http://python.readthedocs.io/en/latest/library/os.html#os.urandom

Tornado Documentation, Release 3.1

New modules

• tornado.gen: A generator-based interface to simplify writing asynchronous functions.

• tornado.netutil: Parts of tornado.httpserver have been extracted into a new module for use with
non-HTTP protocols.

• tornado.platform.twisted: A bridge between the Tornado IOLoop and the Twisted Reactor, allowing
code written for Twisted to be run on Tornado.

• tornado.process: Multi-process mode has been improved, and can now restart crashed child pro-
cesses. A new entry point has been added at tornado.process.fork_processes, although tornado.
httpserver.HTTPServer.start is still supported.

tornado.web

• tornado.web.RequestHandler.write_error replaces get_error_html as the preferred way to
generate custom error pages (get_error_html is still supported, but deprecated)

• In tornado.web.Application, handlers may be specified by (fully-qualified) name instead of importing
and passing the class object itself.

• It is now possible to use a custom subclass of StaticFileHandler with the static_handler_class
application setting, and this subclass can override the behavior of the static_url method.

• StaticFileHandler subclasses can now override get_cache_time to customize cache control behav-
ior.

• tornado.web.RequestHandler.get_secure_cookie now has a max_age_days parameter to al-
low applications to override the default one-month expiration.

• set_cookie now accepts a max_age keyword argument to set the max-age cookie attribute (note under-
score vs dash)

• tornado.web.RequestHandler.set_default_headers may be overridden to set headers in a way
that does not get reset during error handling.

• RequestHandler.add_header can now be used to set a header that can appear multiple times in the
response.

• RequestHandler.flush can now take a callback for flow control.

• The application/json content type can now be gzipped.

• The cookie-signing functions are now accessible as static functions tornado.web.
create_signed_value and tornado.web.decode_signed_value.

tornado.httpserver

• To facilitate some advanced multi-process scenarios, HTTPServer has a new method add_sockets, and
socket-opening code is available separately as tornado.netutil.bind_sockets.

• The cookies property is now available on tornado.httpserver.HTTPRequest (it is also available in
its old location as a property of RequestHandler)

• tornado.httpserver.HTTPServer.bind now takes a backlog argument with the same meaning as
socket.listen.

• HTTPServer can now be run on a unix socket as well as TCP.

• Fixed exception at startup when socket.AI_ADDRCONFIG is not available, as on Windows XP

6.11. What’s new in Tornado 2.1 119

Tornado Documentation, Release 3.1

IOLoop and IOStream

• IOStream performance has been improved, especially for small synchronous requests.

• New methods tornado.iostream.IOStream.read_until_close and tornado.iostream.
IOStream.read_until_regex.

• IOStream.read_bytes and IOStream.read_until_close now take a streaming_callback
argument to return data as it is received rather than all at once.

• IOLoop.add_timeout now accepts datetime.timedelta objects in addition to absolute timestamps.

• PeriodicCallback now sticks to the specified period instead of creeping later due to accumulated errors.

• tornado.ioloop.IOLoop and tornado.httpclient.HTTPClient now have close() methods
that should be used in applications that create and destroy many of these objects.

• IOLoop.install can now be used to use a custom subclass of IOLoop as the singleton without monkey-
patching.

• IOStream should now always call the close callback instead of the connect callback on a connection error.

• The IOStream close callback will no longer be called while there are pending read callbacks that can be
satisfied with buffered data.

tornado.simple_httpclient

• Now supports client SSL certificates with the client_key and client_cert parameters to tornado.
httpclient.HTTPRequest

• Now takes a maximum buffer size, to allow reading files larger than 100MB

• Now works with HTTP 1.0 servers that don’t send a Content-Length header

• The allow_nonstandard_methods flag on HTTP client requests now permits methods other than POST
and PUT to contain bodies.

• Fixed file descriptor leaks and multiple callback invocations in SimpleAsyncHTTPClient

• No longer consumes extra connection resources when following redirects.

• Now works with buggy web servers that separate headers with \n instead of \r\n\r\n.

• Now sets response.request_time correctly.

• Connect timeouts now work correctly.

Other modules

• tornado.auth.OpenIdMixin now uses the correct realm when the callback URI is on a different domain.

• tornado.autoreload has a new command-line interface which can be used to wrap any script. This
replaces the --autoreload argument to tornado.testing.main and is more robust against syntax
errors.

• tornado.autoreload.watch can be used to watch files other than the sources of imported modules.

• tornado.database.Connection has new variants of execute and executemany that return the
number of rows affected instead of the last inserted row id.

• tornado.locale.load_translations now accepts any properly-formatted locale name, not just those
in the predefined LOCALE_NAMES list.

120 Chapter 6. Release notes

http://python.readthedocs.io/en/latest/library/datetime.html#datetime.timedelta

Tornado Documentation, Release 3.1

• tornado.options.define now takes a group parameter to group options in --help output.

• Template loaders now take a namespace constructor argument to add entries to the template namespace.

• tornado.websocket now supports the latest (“hybi-10”) version of the protocol (the old version, “hixie-76”
is still supported; the correct version is detected automatically).

• tornado.websocket now works on Python 3

Bug fixes

• Windows support has been improved. Windows is still not an officially supported platform, but the test suite
now passes and tornado.autoreload works.

• Uploading files whose names contain special characters will now work.

• Cookie values containing special characters are now properly quoted and unquoted.

• Multi-line headers are now supported.

• Repeated Content-Length headers (which may be added by certain proxies) are now supported in
HTTPServer.

• Unicode string literals now work in template expressions.

• The template {% module %} directive now works even if applications use a template variable named
modules.

• Requests with “Expect: 100-continue” now work on python 3

What’s new in Tornado 2.0

Jun 21, 2011

Major changes:

* Template output is automatically escaped by default; see backwards
compatibility note below.

* The default AsyncHTTPClient implementation is now simple_httpclient.

* Python 3.2 is now supported.

Backwards compatibility:

* Template autoescaping is enabled by default. Applications upgrading from
a previous release of Tornado must either disable autoescaping or adapt
their templates to work with it. For most applications, the simplest
way to do this is to pass autoescape=None to the Application constructor.
Note that this affects certain built-in methods, e.g. xsrf_form_html
and linkify, which must now be called with {% raw %} instead of {}

* Applications that wish to continue using curl_httpclient instead of
simple_httpclient may do so by calling
AsyncHTTPClient.configure("tornado.curl_httpclient.CurlAsyncHTTPClient")

at the beginning of the process. Users of Python 2.5 will probably want
to use curl_httpclient as simple_httpclient only supports ssl on Python 2.6+.

* Python 3 compatibility involved many changes throughout the codebase,
so users are encouraged to test their applications more thoroughly than
usual when upgrading to this release.

Other changes in this release:

* Templates support several new directives:

6.12. What’s new in Tornado 2.0 121

Tornado Documentation, Release 3.1

- {% autoescape ...%} to control escaping behavior
- {% raw ... %} for unescaped output
- {% module ... %} for calling UIModules

* {% module Template(path, **kwargs) %} may now be used to call another
template with an independent namespace

* All IOStream callbacks are now run directly on the IOLoop via add_callback.

* HTTPServer now supports IPv6 where available. To disable, pass
family=socket.AF_INET to HTTPServer.bind().

* HTTPClient now supports IPv6, configurable via allow_ipv6=bool on the
HTTPRequest. allow_ipv6 defaults to false on simple_httpclient and true
on curl_httpclient.

* RequestHandlers can use an encoding other than utf-8 for query parameters
by overriding decode_argument()

* Performance improvements, especially for applications that use a lot of
IOLoop timeouts

* HTTP OPTIONS method no longer requires an XSRF token.

* JSON output (RequestHandler.write(dict)) now sets Content-Type to
application/json

* Etag computation can now be customized or disabled by overriding
RequestHandler.compute_etag

* USE_SIMPLE_HTTPCLIENT environment variable is no longer supported.
Use AsyncHTTPClient.configure instead.

What’s new in Tornado 1.2.1

Mar 3, 2011

We are pleased to announce the release of Tornado 1.2.1, available from
https://github.com/downloads/facebook/tornado/tornado-1.2.1.tar.gz

This release contains only two small changes relative to version 1.2:

* FacebookGraphMixin has been updated to work with a recent change to the
Facebook API.

* Running "setup.py install" will no longer attempt to automatically
install pycurl. This wasn't working well on platforms where the best way
to install pycurl is via something like apt-get instead of easy_install.

This is an important upgrade if you are using FacebookGraphMixin, but
otherwise it can be safely ignored.

What’s new in Tornado 1.2

Feb 20, 2011

We are pleased to announce the release of Tornado 1.2, available from
https://github.com/downloads/facebook/tornado/tornado-1.2.tar.gz

Backwards compatibility notes:

* This release includes the backwards-incompatible security change from
version 1.1.1. Users upgrading from 1.1 or earlier should read the
release notes from that release:

122 Chapter 6. Release notes

Tornado Documentation, Release 3.1

http://groups.google.com/group/python-tornado/browse_thread/thread/b36191c781580cde

* StackContexts that do something other than catch exceptions may need to
be modified to be reentrant.
https://github.com/facebook/tornado/commit/7a7e24143e77481d140fb5579bc67e4c45cbcfad

* When XSRF tokens are used, the token must also be present on PUT and
DELETE requests (anything but GET and HEAD)

New features:

* A new HTTP client implementation is available in the module
tornado.simple_httpclient. This HTTP client does not depend on pycurl.
It has not yet been tested extensively in production, but is intended
to eventually replace the pycurl-based HTTP client in a future release of
Tornado. To transparently replace tornado.httpclient.AsyncHTTPClient with
this new implementation, you can set the environment variable
USE_SIMPLE_HTTPCLIENT=1 (note that the next release of Tornado will
likely include a different way to select HTTP client implementations)

* Request logging is now done by the Application rather than the
RequestHandler. Logging behavior may be customized by either overriding
Application.log_request in a subclass or by passing log_function
as an Application setting

* Application.listen(port): Convenience method as an alternative to
explicitly creating an HTTPServer

* tornado.escape.linkify(): Wrap urls in <a> tags

* RequestHandler.create_signed_value(): Create signatures like the
secure_cookie methods without setting cookies.

* tornado.testing.get_unused_port(): Returns a port selected in the same
way as inAsyncHTTPTestCase

* AsyncHTTPTestCase.fetch(): Convenience method for synchronous fetches

* IOLoop.set_blocking_signal_threshold(): Set a callback to be run when
the IOLoop is blocked.

* IOStream.connect(): Asynchronously connect a client socket

* AsyncHTTPClient.handle_callback_exception(): May be overridden
in subclass for custom error handling

* httpclient.HTTPRequest has two new keyword arguments, validate_cert and
ca_certs. Setting validate_cert=False will disable all certificate checks
when fetching https urls. ca_certs may be set to a filename containing
trusted certificate authorities (defaults will be used if this is
unspecified)

* HTTPRequest.get_ssl_certificate(): Returns the client's SSL certificate
(if client certificates were requested in the server's ssl_options

* StaticFileHandler can be configured to return a default file (e.g.
index.html) when a directory is requested

* Template directives of the form "{% from x import y %}" are now
supported (in addition to the existing support for "{% import x
%}"

* FacebookGraphMixin.get_authenticated_user now accepts a new
parameter 'extra_fields' which may be used to request additional
information about the user

Bug fixes:

* auth: Fixed KeyError with Facebook offline_access

* auth: Uses request.uri instead of request.path as the default redirect
so that parameters are preserved.

* escape: xhtml_escape() now returns a unicode string, not
utf8-encoded bytes

* ioloop: Callbacks added with add_callback are now run in the order they
were added

* ioloop: PeriodicCallback.stop can now be called from inside the callback.

6.14. What’s new in Tornado 1.2 123

Tornado Documentation, Release 3.1

* iostream: Fixed several bugs in SSLIOStream

* iostream: Detect when the other side has closed the connection even with
the select()-based IOLoop

* iostream: read_bytes(0) now works as expected

* iostream: Fixed bug when writing large amounts of data on windows

* iostream: Fixed infinite loop that could occur with unhandled exceptions

* httpclient: Fix bugs when some requests use proxies and others don't

* httpserver: HTTPRequest.protocol is now set correctly when using the
built-in SSL support

* httpserver: When using multiple processes, the standard library's
random number generator is re-seeded in each child process

* httpserver: With xheaders enabled, X-Forwarded-Proto is supported as an
alternative to X-Scheme

* httpserver: Fixed bugs in multipart/form-data parsing

* locale: format_date() now behaves sanely with dates in the future

* locale: Updates to the language list

* stack_context: Fixed bug with contexts leaking through reused IOStreams

* stack_context: Simplified semantics and improved performance

* web: The order of css_files from UIModules is now preserved

* web: Fixed error with default_host redirect

* web: StaticFileHandler works when os.path.sep != '/' (i.e. on Windows)

* web: Fixed a caching-related bug in StaticFileHandler when a file's
timestamp has changed but its contents have not.

* web: Fixed bugs with HEAD requests and e.g. Etag headers

* web: Fix bugs when different handlers have different static_paths

* web: @removeslash will no longer cause a redirect loop when applied to the
root path

* websocket: Now works over SSL

* websocket: Improved compatibility with proxies

Many thanks to everyone who contributed patches, bug reports, and feedback
that went into this release!

-Ben

What’s new in Tornado 1.1.1

Feb 8, 2011

Tornado 1.1.1 is a BACKWARDS-INCOMPATIBLE security update that fixes an
XSRF vulnerability. It is available at
https://github.com/downloads/facebook/tornado/tornado-1.1.1.tar.gz

This is a backwards-incompatible change. Applications that previously
relied on a blanket exception for XMLHTTPRequest may need to be modified
to explicitly include the XSRF token when making ajax requests.

The tornado chat demo application demonstrates one way of adding this
token (specifically the function postJSON in demos/chat/static/chat.js).

More information about this change and its justification can be found at
http://www.djangoproject.com/weblog/2011/feb/08/security/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails

124 Chapter 6. Release notes

Tornado Documentation, Release 3.1

What’s new in Tornado 1.1

Sep 7, 2010

We are pleased to announce the release of Tornado 1.1, available from
https://github.com/downloads/facebook/tornado/tornado-1.1.tar.gz

Changes in this release:

* RequestHandler.async_callback and related functions in other classes
are no longer needed in most cases (although it's harmless to continue
using them). Uncaught exceptions will now cause the request to be closed
even in a callback. If you're curious how this works, see the new
tornado.stack_context module.

* The new tornado.testing module contains support for unit testing
asynchronous IOLoop-based code.

* AsyncHTTPClient has been rewritten (the new implementation was
available as AsyncHTTPClient2 in Tornado 1.0; both names are
supported for backwards compatibility).

* The tornado.auth module has had a number of updates, including support
for OAuth 2.0 and the Facebook Graph API, and upgrading Twitter and
Google support to OAuth 1.0a.

* The websocket module is back and supports the latest version (76) of the
websocket protocol. Note that this module's interface is different
from the websocket module that appeared in pre-1.0 versions of Tornado.

* New method RequestHandler.initialize() can be overridden in subclasses
to simplify handling arguments from URLSpecs. The sequence of methods
called during initialization is documented at
http://tornadoweb.org/documentation#overriding-requesthandler-methods

* get_argument() and related methods now work on PUT requests in addition
to POST.

* The httpclient module now supports HTTP proxies.

* When HTTPServer is run in SSL mode, the SSL handshake is now non-blocking.

* Many smaller bug fixes and documentation updates

Backwards-compatibility notes:

* While most users of Tornado should not have to deal with the stack_context
module directly, users of worker thread pools and similar constructs may
need to use stack_context.wrap and/or NullContext to avoid memory leaks.

* The new AsyncHTTPClient still works with libcurl version 7.16.x, but it
performs better when both libcurl and pycurl are at least version 7.18.2.

* OAuth transactions started under previous versions of the auth module
cannot be completed under the new module. This applies only to the
initial authorization process; once an authorized token is issued that
token works with either version.

Many thanks to everyone who contributed patches, bug reports, and feedback
that went into this release!

-Ben

6.16. What’s new in Tornado 1.1 125

Tornado Documentation, Release 3.1

What’s new in Tornado 1.0.1

Aug 13, 2010

This release fixes a bug with RequestHandler.get_secure_cookie, which would
in some circumstances allow an attacker to tamper with data stored in the
cookie.

What’s new in Tornado 1.0

July 22, 2010

We are pleased to announce the release of Tornado 1.0, available
from
https://github.com/downloads/facebook/tornado/tornado-1.0.tar.gz.
There have been many changes since version 0.2; here are some of
the highlights:

New features:

* Improved support for running other WSGI applications in a
Tornado server (tested with Django and CherryPy)

* Improved performance on Mac OS X and BSD (kqueue-based IOLoop),
and experimental support for win32

* Rewritten AsyncHTTPClient available as
tornado.httpclient.AsyncHTTPClient2 (this will become the
default in a future release)

* Support for standard .mo files in addition to .csv in the locale
module

* Pre-forking support for running multiple Tornado processes at
once (see HTTPServer.start())

* SSL and gzip support in HTTPServer

* reverse_url() function refers to urls from the Application
config by name from templates and RequestHandlers

* RequestHandler.on_connection_close() callback is called when the
client has closed the connection (subject to limitations of the
underlying network stack, any proxies, etc)

* Static files can now be served somewhere other than /static/ via
the static_url_prefix application setting

* URL regexes can now use named groups ("(?P<name>)") to pass
arguments to get()/post() via keyword instead of position

* HTTP header dictionary-like objects now support multiple values
for the same header via the get_all() and add() methods.

* Several new options in the httpclient module, including
prepare_curl_callback and header_callback

* Improved logging configuration in tornado.options.

* UIModule.html_body() can be used to return html to be inserted
at the end of the document body.

Backwards-incompatible changes:

* RequestHandler.get_error_html() now receives the exception
object as a keyword argument if the error was caused by an
uncaught exception.

* Secure cookies are now more secure, but incompatible with

126 Chapter 6. Release notes

Tornado Documentation, Release 3.1

cookies set by Tornado 0.2. To read cookies set by older
versions of Tornado, pass include_name=False to
RequestHandler.get_secure_cookie()

* Parameters passed to RequestHandler.get/post() by extraction
from the path now have %-escapes decoded, for consistency with
the processing that was already done with other query
parameters.

Many thanks to everyone who contributed patches, bug reports, and
feedback that went into this release!

-Ben

This documentation is also available in PDF and Epub formats.

6.18. What’s new in Tornado 1.0 127

https://readthedocs.org/projects/tornado/downloads/

Tornado Documentation, Release 3.1

128 Chapter 6. Release notes

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

129

Tornado Documentation, Release 3.1

130 Chapter 7. Indices and tables

Python Module Index

t
tornado.auth, 65
tornado.autoreload, 81
tornado.concurrent, 82
tornado.escape, 39
tornado.gen, 45
tornado.httpclient, 56
tornado.httpserver, 33
tornado.httputil, 83
tornado.ioloop, 48
tornado.iostream, 53
tornado.locale, 41
tornado.log, 85
tornado.netutil, 60
tornado.options, 85
tornado.platform.caresresolver, 73
tornado.platform.twisted, 74
tornado.process, 88
tornado.stack_context, 89
tornado.tcpserver, 62
tornado.template, 36
tornado.testing, 91
tornado.util, 96
tornado.web, 19
tornado.websocket, 75
tornado.wsgi, 77

131

Tornado Documentation, Release 3.1

132 Python Module Index

Index

Symbols
_oauth_consumer_token() (tornado.auth.OAuthMixin

method), 67
_oauth_get_user_future() (tornado.auth.OAuthMixin

method), 67

A
add() (tornado.httputil.HTTPHeaders method), 84
add_accept_handler() (in module tornado.netutil), 61
add_callback() (tornado.ioloop.IOLoop method), 51
add_callback_from_signal() (tornado.ioloop.IOLoop

method), 51
add_done_callback() (tornado.concurrent.Future

method), 82
add_future() (tornado.ioloop.IOLoop method), 51
add_handler() (tornado.ioloop.IOLoop method), 51
add_handlers() (tornado.web.Application method), 27
add_header() (tornado.web.RequestHandler method), 21
add_parse_callback() (in module tornado.options), 86
add_parse_callback() (tornado.options.OptionParser

method), 87
add_reload_hook() (in module tornado.autoreload), 81
add_socket() (tornado.tcpserver.TCPServer method), 63
add_sockets() (tornado.tcpserver.TCPServer method), 63
add_timeout() (tornado.ioloop.IOLoop method), 51
addslash() (in module tornado.web), 28
allow_draft76() (tornado.websocket.WebSocketHandler

method), 76
Application (class in tornado.web), 26
application (tornado.web.RequestHandler attribute), 24
ArgReplacer (class in tornado.util), 97
Arguments (class in tornado.gen), 48
arguments (tornado.httpserver.HTTPRequest attribute),

34
as_dict() (tornado.options.OptionParser method), 87
async_callback() (tornado.web.RequestHandler method),

24
async_callback() (tornado.websocket.WebSocketHandler

method), 77

asynchronous() (in module tornado.web), 28
AsyncHTTPClient (class in tornado.httpclient), 57
AsyncHTTPSTestCase (class in tornado.testing), 93
AsyncHTTPTestCase (class in tornado.testing), 93
AsyncTestCase (class in tornado.testing), 91
authenticate_redirect() (tornado.auth.FacebookMixin

method), 70
authenticate_redirect() (tornado.auth.OpenIdMixin

method), 66
authenticate_redirect() (tornado.auth.TwitterMixin

method), 72
authenticated() (in module tornado.web), 28
authorize_redirect() (tornado.auth.FacebookMixin

method), 70
authorize_redirect() (tornado.auth.GoogleMixin method),

68
authorize_redirect() (tornado.auth.OAuth2Mixin

method), 67
authorize_redirect() (tornado.auth.OAuthMixin method),

66

B
BaseIOStream (class in tornado.iostream), 53
BaseLoader (class in tornado.template), 39
bind() (tornado.tcpserver.TCPServer method), 63
bind_sockets() (in module tornado.netutil), 60
bind_unix_socket() (in module tornado.netutil), 61
bind_unused_port() (in module tornado.testing), 95
BlockingResolver (class in tornado.netutil), 61
body (tornado.httpserver.HTTPRequest attribute), 33

C
Callback (class in tornado.gen), 47
CaresResolver (class in tornado.platform.caresresolver),

73
chain_future() (in module tornado.concurrent), 83
check_xsrf_cookie() (tornado.web.RequestHandler

method), 24
clear() (tornado.web.RequestHandler method), 23

133

Tornado Documentation, Release 3.1

clear_all_cookies() (tornado.web.RequestHandler
method), 23

clear_cookie() (tornado.web.RequestHandler method), 23
clear_header() (tornado.web.RequestHandler method), 22
close() (tornado.httpclient.AsyncHTTPClient method),

57
close() (tornado.httpclient.HTTPClient method), 57
close() (tornado.ioloop.IOLoop method), 50
close() (tornado.iostream.BaseIOStream method), 54
close() (tornado.netutil.Resolver method), 61
close() (tornado.websocket.WebSocketHandler method),

76
close_fd() (tornado.iostream.BaseIOStream method), 54
closed() (tornado.iostream.BaseIOStream method), 54
compute_etag() (tornado.web.RequestHandler method),

24
compute_etag() (tornado.web.StaticFileHandler method),

31
Configurable (class in tornado.util), 96
configurable_base() (tornado.util.Configurable class

method), 96
configurable_default() (tornado.util.Configurable class

method), 97
configure() (tornado.httpclient.AsyncHTTPClient class

method), 57
configure() (tornado.util.Configurable class method), 97
configured_class() (tornado.util.Configurable class

method), 97
connect() (tornado.iostream.IOStream method), 55
connection (tornado.httpserver.HTTPRequest attribute),

34
cookies (tornado.httpserver.HTTPRequest attribute), 34
cookies (tornado.web.RequestHandler attribute), 23
cookies (tornado.wsgi.HTTPRequest attribute), 78
coroutine() (in module tornado.gen), 46
cpu_count() (in module tornado.process), 88
create_signed_value() (tornado.web.RequestHandler

method), 23
create_template_loader() (tornado.web.RequestHandler

method), 24
css_files() (tornado.web.UIModule method), 29
CSVLocale (class in tornado.locale), 43
current() (tornado.ioloop.IOLoop static method), 49

D
decode_argument() (tornado.web.RequestHandler

method), 21
decompress() (tornado.util.GzipDecompressor method),

96
define() (in module tornado.options), 86
define() (tornado.options.OptionParser method), 87
delete() (tornado.web.RequestHandler method), 20
DictLoader (class in tornado.template), 39
done() (tornado.concurrent.Future method), 82

E
embedded_css() (tornado.web.UIModule method), 29
embedded_javascript() (tornado.web.UIModule method),

29
enable_pretty_logging() (in module tornado.log), 85
engine() (in module tornado.gen), 46
environ() (tornado.wsgi.WSGIContainer static method),

79
Error, 87
ErrorHandler (class in tornado.web), 30
exception() (tornado.concurrent.Future method), 82
ExceptionStackContext (class in tornado.stack_context),

90
ExecutorResolver (class in tornado.netutil), 61
ExpectLog (class in tornado.testing), 94

F
facebook_request() (tornado.auth.FacebookGraphMixin

method), 69
facebook_request() (tornado.auth.FacebookMixin

method), 71
FacebookGraphMixin (class in tornado.auth), 68
FacebookMixin (class in tornado.auth), 69
FallbackHandler (class in tornado.web), 30
fetch() (tornado.httpclient.AsyncHTTPClient method),

57
fetch() (tornado.httpclient.HTTPClient method), 57
fetch() (tornado.testing.AsyncHTTPTestCase method),

93
fileno() (tornado.iostream.BaseIOStream method), 54
files (tornado.httpserver.HTTPRequest attribute), 34
finish() (tornado.httpserver.HTTPConnection method), 36
finish() (tornado.httpserver.HTTPRequest method), 34
finish() (tornado.web.RequestHandler method), 22
flush() (tornado.util.GzipDecompressor method), 96
flush() (tornado.web.RequestHandler method), 22
fork_processes() (in module tornado.process), 88
format_date() (tornado.locale.Locale method), 43
format_day() (tornado.locale.Locale method), 43
format_timestamp() (in module tornado.httputil), 85
friendfeed_request() (tornado.auth.FriendFeedMixin

method), 73
FriendFeedMixin (class in tornado.auth), 72
friendly_number() (tornado.locale.Locale method), 43
full_url() (tornado.httpserver.HTTPRequest method), 34
full_url() (tornado.wsgi.HTTPRequest method), 78
Future (class in tornado.concurrent), 82

G
gen_test() (in module tornado.testing), 94
generate() (tornado.template.Template method), 39
get() (in module tornado.locale), 42
get() (tornado.locale.Locale class method), 43

134 Index

Tornado Documentation, Release 3.1

get() (tornado.web.RequestHandler method), 20
get_absolute_path() (tornado.web.StaticFileHandler class

method), 31
get_all() (tornado.httputil.HTTPHeaders method), 84
get_app() (tornado.testing.AsyncHTTPTestCase

method), 93
get_argument() (tornado.web.RequestHandler method),

21
get_arguments() (tornado.web.RequestHandler method),

21
get_async_test_timeout() (in module tornado.testing), 95
get_auth_http_client() (tor-

nado.auth.FacebookGraphMixin method),
69

get_auth_http_client() (tornado.auth.FacebookMixin
method), 71

get_auth_http_client() (tornado.auth.OAuthMixin
method), 67

get_auth_http_client() (tornado.auth.OpenIdMixin
method), 66

get_authenticated_user() (tor-
nado.auth.FacebookGraphMixin method),
68

get_authenticated_user() (tornado.auth.FacebookMixin
method), 70

get_authenticated_user() (tornado.auth.GoogleMixin
method), 68

get_authenticated_user() (tornado.auth.OAuthMixin
method), 67

get_authenticated_user() (tornado.auth.OpenIdMixin
method), 66

get_browser_locale() (tornado.web.RequestHandler
method), 24

get_cache_time() (tornado.web.StaticFileHandler
method), 32

get_closest() (tornado.locale.Locale class method), 43
get_content() (tornado.web.StaticFileHandler class

method), 31
get_content_size() (tornado.web.StaticFileHandler

method), 32
get_content_type() (tornado.web.StaticFileHandler

method), 32
get_content_version() (tornado.web.StaticFileHandler

class method), 32
get_cookie() (tornado.web.RequestHandler method), 23
get_current_user() (tornado.web.RequestHandler

method), 24
get_fd_error() (tornado.iostream.BaseIOStream method),

54
get_http_port() (tornado.testing.AsyncHTTPTestCase

method), 93
get_httpserver_options() (tor-

nado.testing.AsyncHTTPTestCase method),
93

get_list() (tornado.httputil.HTTPHeaders method), 84
get_login_url() (tornado.web.RequestHandler method),

24
get_modified_time() (tornado.web.StaticFileHandler

method), 32
get_new_ioloop() (tornado.testing.AsyncTestCase

method), 92
get_result() (tornado.gen.YieldPoint method), 48
get_secure_cookie() (tornado.web.RequestHandler

method), 23
get_ssl_certificate() (tornado.httpserver.HTTPRequest

method), 34
get_ssl_options() (tornado.testing.AsyncHTTPSTestCase

method), 93
get_status() (tornado.web.RequestHandler method), 24
get_supported_locales() (in module tornado.locale), 43
get_template_namespace() (tornado.web.RequestHandler

method), 22
get_template_path() (tornado.web.RequestHandler

method), 24
get_unused_port() (in module tornado.testing), 95
get_url() (tornado.testing.AsyncHTTPTestCase method),

93
get_user_locale() (tornado.web.RequestHandler method),

25
get_version() (tornado.web.StaticFileHandler class

method), 33
get_websocket_scheme() (tor-

nado.websocket.WebSocketHandler method),
76

GettextLocale (class in tornado.locale), 43
GoogleMixin (class in tornado.auth), 68
group_dict() (tornado.options.OptionParser method), 87
groups() (tornado.options.OptionParser method), 88
GzipDecompressor (class in tornado.util), 96

H
handle_callback_exception() (tornado.ioloop.IOLoop

method), 52
handle_stream() (tornado.tcpserver.TCPServer method),

64
head() (tornado.web.RequestHandler method), 20
headers (tornado.httpserver.HTTPRequest attribute), 33
host (tornado.httpserver.HTTPRequest attribute), 34
html_body() (tornado.web.UIModule method), 30
html_head() (tornado.web.UIModule method), 29
HTTPClient (class in tornado.httpclient), 56
HTTPConnection (class in tornado.httpserver), 36
HTTPError, 29, 60
HTTPFile (class in tornado.httputil), 84
HTTPHeaders (class in tornado.httputil), 83
HTTPRequest (class in tornado.httpclient), 58
HTTPRequest (class in tornado.httpserver), 33
HTTPRequest (class in tornado.wsgi), 78

Index 135

Tornado Documentation, Release 3.1

HTTPResponse (class in tornado.httpclient), 59
HTTPServer (class in tornado.httpserver), 35

I
import_object() (in module tornado.util), 96
initialize() (tornado.process.Subprocess class method), 89
initialize() (tornado.util.Configurable method), 97
initialize() (tornado.web.RequestHandler method), 20
initialized() (tornado.ioloop.IOLoop static method), 49
install() (tornado.ioloop.IOLoop method), 49
instance() (tornado.ioloop.IOLoop static method), 49
IOLoop (class in tornado.ioloop), 48
IOStream (class in tornado.iostream), 55
is_ready() (tornado.gen.YieldPoint method), 47
is_valid_ip() (in module tornado.netutil), 61
items() (tornado.options.OptionParser method), 88

J
javascript_files() (tornado.web.UIModule method), 29
json_decode() (in module tornado.escape), 40
json_encode() (in module tornado.escape), 40

L
linkify() (in module tornado.escape), 41
list() (tornado.locale.Locale method), 43
listen() (tornado.tcpserver.TCPServer method), 63
listen() (tornado.web.Application method), 27
load() (tornado.template.BaseLoader method), 39
load_gettext_translations() (in module tornado.locale), 42
load_translations() (in module tornado.locale), 42
Loader (class in tornado.template), 39
Locale (class in tornado.locale), 43
log_exception() (tornado.web.RequestHandler method),

25
log_request() (tornado.web.Application method), 28
log_stack() (tornado.ioloop.IOLoop method), 52
LogFormatter (class in tornado.log), 85
LogTrapTestCase (class in tornado.testing), 94

M
main() (in module tornado.autoreload), 81
main() (in module tornado.testing), 95
make_current() (tornado.ioloop.IOLoop method), 49
make_static_url() (tornado.web.StaticFileHandler class

method), 32
method (tornado.httpserver.HTTPRequest attribute), 33
MissingArgumentError, 29
mockable() (tornado.options.OptionParser method), 88

N
native_str() (in module tornado.escape), 40
NullContext (class in tornado.stack_context), 91

O
OAuth2Mixin (class in tornado.auth), 67
OAuthMixin (class in tornado.auth), 66
ObjectDict (class in tornado.util), 96
on_close() (tornado.websocket.WebSocketHandler

method), 76
on_connection_close() (tornado.web.RequestHandler

method), 25
on_finish() (tornado.web.RequestHandler method), 20
on_message() (tornado.websocket.WebSocketHandler

method), 76
on_pong() (tornado.websocket.WebSocketHandler

method), 77
open() (tornado.websocket.WebSocketHandler method),

75
OpenIdMixin (class in tornado.auth), 66
OptionParser (class in tornado.options), 87
options (in module tornado.options), 86
options() (tornado.web.RequestHandler method), 20
OverrideResolver (class in tornado.netutil), 62

P
parse() (tornado.httputil.HTTPHeaders class method), 84
parse_body_arguments() (in module tornado.httputil), 84
parse_command_line() (in module tornado.options), 86
parse_command_line() (tornado.options.OptionParser

method), 88
parse_config_file() (in module tornado.options), 86
parse_config_file() (tornado.options.OptionParser

method), 88
parse_line() (tornado.httputil.HTTPHeaders method), 84
parse_multipart_form_data() (in module tor-

nado.httputil), 85
parse_url_path() (tornado.web.StaticFileHandler

method), 32
ParseError, 39
path (tornado.httpserver.HTTPRequest attribute), 33
path_args (tornado.web.RequestHandler attribute), 21
path_kwargs (tornado.web.RequestHandler attribute), 21
PeriodicCallback (class in tornado.ioloop), 52
ping() (tornado.websocket.WebSocketHandler method),

77
PipeIOStream (class in tornado.iostream), 56
post() (tornado.web.RequestHandler method), 20
prepare() (tornado.web.RequestHandler method), 20
print_help() (in module tornado.options), 86
print_help() (tornado.options.OptionParser method), 88
protocol (tornado.httpserver.HTTPRequest attribute), 34
put() (tornado.web.RequestHandler method), 20

Q
query (tornado.httpserver.HTTPRequest attribute), 33

136 Index

Tornado Documentation, Release 3.1

R
read_bytes() (tornado.iostream.BaseIOStream method),

53
read_from_fd() (tornado.iostream.BaseIOStream

method), 54
read_message() (tornado.websocket.WebSocketClientConnection

method), 77
read_until() (tornado.iostream.BaseIOStream method),

53
read_until_close() (tornado.iostream.BaseIOStream

method), 53
read_until_regex() (tornado.iostream.BaseIOStream

method), 53
reading() (tornado.iostream.BaseIOStream method), 54
recursive_unicode() (in module tornado.escape), 41
redirect() (tornado.web.RequestHandler method), 22
RedirectHandler (class in tornado.web), 30
remote_ip (tornado.httpserver.HTTPRequest attribute),

33
remove_handler() (tornado.ioloop.IOLoop method), 51
remove_timeout() (tornado.ioloop.IOLoop method), 51
removeslash() (in module tornado.web), 29
render() (tornado.web.RequestHandler method), 22
render() (tornado.web.UIModule method), 29
render_string() (tornado.web.RequestHandler method),

22
render_string() (tornado.web.UIModule method), 30
replace() (tornado.util.ArgReplacer method), 97
request (tornado.web.RequestHandler attribute), 21
request_time() (tornado.httpserver.HTTPRequest

method), 34
request_time() (tornado.wsgi.HTTPRequest method), 78
RequestHandler (class in tornado.web), 20
require_setting() (tornado.web.RequestHandler method),

25
reset() (tornado.template.BaseLoader method), 39
resolve() (tornado.netutil.Resolver method), 61
resolve_path() (tornado.template.BaseLoader method),

39
Resolver (class in tornado.netutil), 61
result() (tornado.concurrent.Future method), 82
rethrow() (tornado.httpclient.HTTPResponse method), 60
Return, 48
return_future() (in module tornado.concurrent), 83
reverse_url() (tornado.web.Application method), 27
reverse_url() (tornado.web.RequestHandler method), 25
run_on_executor() (in module tornado.concurrent), 83
run_sync() (tornado.ioloop.IOLoop method), 50
run_with_stack_context() (in module tor-

nado.stack_context), 91

S
select_subprotocol() (tor-

nado.websocket.WebSocketHandler method),

76
send_error() (tornado.web.RequestHandler method), 22
set_blocking_log_threshold() (tornado.ioloop.IOLoop

method), 52
set_blocking_signal_threshold() (tornado.ioloop.IOLoop

method), 52
set_close_callback() (tor-

nado.httpserver.HTTPConnection method),
36

set_close_callback() (tornado.iostream.BaseIOStream
method), 54

set_cookie() (tornado.web.RequestHandler method), 23
set_default_headers() (tornado.web.RequestHandler

method), 22
set_default_locale() (in module tornado.locale), 42
set_exc_info() (tornado.concurrent.TracebackFuture

method), 83
set_exit_callback() (tornado.process.Subprocess

method), 89
set_extra_headers() (tornado.web.StaticFileHandler

method), 32
set_header() (tornado.web.RequestHandler method), 21
set_headers() (tornado.web.StaticFileHandler method),

31
set_nodelay() (tornado.iostream.BaseIOStream method),

54
set_nodelay() (tornado.websocket.WebSocketHandler

method), 76
set_secure_cookie() (tornado.web.RequestHandler

method), 23
set_status() (tornado.web.RequestHandler method), 21
settings (tornado.web.Application attribute), 26
settings (tornado.web.RequestHandler attribute), 25
should_return_304() (tornado.web.StaticFileHandler

method), 31
squeeze() (in module tornado.escape), 41
ssl_options_to_context() (in module tornado.netutil), 62
ssl_wrap_socket() (in module tornado.netutil), 62
SSLIOStream (class in tornado.iostream), 55
StackContext (class in tornado.stack_context), 90
start() (in module tornado.autoreload), 82
start() (tornado.gen.YieldPoint method), 47
start() (tornado.ioloop.IOLoop method), 50
start() (tornado.ioloop.PeriodicCallback method), 52
start() (tornado.tcpserver.TCPServer method), 63
static_url() (tornado.web.RequestHandler method), 25
StaticFileHandler (class in tornado.web), 30
stop() (tornado.ioloop.IOLoop method), 50
stop() (tornado.ioloop.PeriodicCallback method), 52
stop() (tornado.tcpserver.TCPServer method), 64
stop() (tornado.testing.AsyncTestCase method), 92
StreamClosedError, 56
Subprocess (class in tornado.process), 89

Index 137

Tornado Documentation, Release 3.1

supports_http_1_1() (tornado.httpserver.HTTPRequest
method), 34

supports_http_1_1() (tornado.wsgi.HTTPRequest
method), 78

T
Task (class in tornado.gen), 47
task_id() (in module tornado.process), 89
TCPServer (class in tornado.tcpserver), 62
Template (class in tornado.template), 39
ThreadedResolver (class in tornado.netutil), 62
time() (tornado.ioloop.IOLoop method), 52
to_basestring() (in module tornado.escape), 40
to_unicode() (in module tornado.escape), 40
tornado.auth (module), 65
tornado.autoreload (module), 81
tornado.concurrent (module), 82
tornado.escape (module), 39
tornado.gen (module), 45
tornado.httpclient (module), 56
tornado.httpserver (module), 33
tornado.httputil (module), 83
tornado.ioloop (module), 48
tornado.iostream (module), 53
tornado.locale (module), 41
tornado.log (module), 85
tornado.netutil (module), 60
tornado.options (module), 85
tornado.platform.caresresolver (module), 73
tornado.platform.twisted (module), 74
tornado.process (module), 88
tornado.stack_context (module), 89
tornado.tcpserver (module), 62
tornado.template (module), 36
tornado.testing (module), 91
tornado.util (module), 96
tornado.web (module), 19
tornado.websocket (module), 75
tornado.wsgi (module), 77
TornadoReactor (class in tornado.platform.twisted), 74
TracebackFuture (class in tornado.concurrent), 82
translate() (tornado.locale.Locale method), 43
TwistedIOLoop (class in tornado.platform.twisted), 74
TwistedResolver (class in tornado.platform.twisted), 74
twitter_request() (tornado.auth.TwitterMixin method), 72
TwitterMixin (class in tornado.auth), 71

U
UIModule (class in tornado.web), 29
uninitialize() (tornado.process.Subprocess class method),

89
update_handler() (tornado.ioloop.IOLoop method), 51
uri (tornado.httpserver.HTTPRequest attribute), 33
url_concat() (in module tornado.httputil), 84

url_escape() (in module tornado.escape), 40
url_unescape() (in module tornado.escape), 40
URLSpec (class in tornado.web), 28
utf8() (in module tornado.escape), 40

V
validate_absolute_path() (tornado.web.StaticFileHandler

method), 31
version (tornado.httpserver.HTTPRequest attribute), 33

W
Wait (class in tornado.gen), 47
wait() (in module tornado.autoreload), 82
wait() (tornado.testing.AsyncTestCase method), 93
WaitAll (class in tornado.gen), 47
watch() (in module tornado.autoreload), 82
websocket_connect() (in module tornado.websocket), 77
WebSocketClientConnection (class in tor-

nado.websocket), 77
WebSocketHandler (class in tornado.websocket), 75
wrap() (in module tornado.stack_context), 91
write() (tornado.httpserver.HTTPConnection method), 36
write() (tornado.httpserver.HTTPRequest method), 34
write() (tornado.iostream.BaseIOStream method), 53
write() (tornado.web.RequestHandler method), 22
write_error() (tornado.web.RequestHandler method), 23
write_message() (tornado.websocket.WebSocketClientConnection

method), 77
write_message() (tornado.websocket.WebSocketHandler

method), 76
write_to_fd() (tornado.iostream.BaseIOStream method),

54
writing() (tornado.iostream.BaseIOStream method), 54
WSGIApplication (class in tornado.wsgi), 77
WSGIContainer (class in tornado.wsgi), 78

X
xhtml_escape() (in module tornado.escape), 40
xhtml_unescape() (in module tornado.escape), 40
xsrf_form_html() (tornado.web.RequestHandler method),

25

Y
YieldPoint (class in tornado.gen), 47

138 Index

	Overview
	Request handlers and request arguments
	Overriding RequestHandler methods
	Error Handling
	Redirection
	Templates
	Cookies and secure cookies
	User authentication
	Cross-site request forgery protection
	Static files and aggressive file caching
	Localization
	UI modules
	Non-blocking, asynchronous requests
	Asynchronous HTTP clients
	Third party authentication
	Debug mode and automatic reloading
	Running Tornado in production
	WSGI and Google AppEngine

	Core web framework
	tornado.web — RequestHandler and Application classes
	tornado.httpserver — Non-blocking HTTP server
	tornado.template — Flexible output generation
	tornado.escape — Escaping and string manipulation
	tornado.locale — Internationalization support

	Asynchronous networking
	tornado.gen — Simplify asynchronous code
	tornado.ioloop — Main event loop
	tornado.iostream — Convenient wrappers for non-blocking sockets
	tornado.httpclient — Asynchronous HTTP client
	tornado.netutil — Miscellaneous network utilities
	tornado.tcpserver — Basic IOStream-based TCP server

	Integration with other services
	tornado.auth — Third-party login with OpenID and OAuth
	tornado.platform.caresresolver — Asynchronous DNS Resolver using C-Ares
	tornado.platform.twisted — Bridges between Twisted and Tornado
	tornado.websocket — Bidirectional communication to the browser
	tornado.wsgi — Interoperability with other Python frameworks and servers

	Utilities
	tornado.autoreload — Automatically detect code changes in development
	tornado.concurrent — Work with threads and futures
	tornado.httputil — Manipulate HTTP headers and URLs
	tornado.log — Logging support
	tornado.options — Command-line parsing
	tornado.process — Utilities for multiple processes
	tornado.stack_context — Exception handling across asynchronous callbacks
	tornado.testing — Unit testing support for asynchronous code
	tornado.util — General-purpose utilities

	Release notes
	What's new in Tornado 3.1
	What's new in Tornado 3.0.2
	What's new in Tornado 3.0.1
	What's new in Tornado 3.0
	What's new in Tornado 2.4.1
	What's new in Tornado 2.4
	What's new in Tornado 2.3
	What's new in Tornado 2.2.1
	What's new in Tornado 2.2
	What's new in Tornado 2.1.1
	What's new in Tornado 2.1
	What's new in Tornado 2.0
	What's new in Tornado 1.2.1
	What's new in Tornado 1.2
	What's new in Tornado 1.1.1
	What's new in Tornado 1.1
	What's new in Tornado 1.0.1
	What's new in Tornado 1.0

	Indices and tables
	Python Module Index

